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Thermoelectric Hall conductivity and figure of merit in Dirac/Weyl materials
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We calculate the thermoelectric response coefficients of three-dimensional Dirac or Weyl semimetals as
a function of magnetic field, temperature, and Fermi energy. We focus in particular on the thermoelectric
Hall coefficient αxy and the Seebeck coefficient Sxx , which are well-defined even in the dissipationless limit.
We contrast the behaviors of αxy and Sxx with those of traditional Schrödinger particle systems, such as
doped semiconductors. Strikingly, we find that for Dirac materials αxy acquires a constant, quantized value at
sufficiently large magnetic field, which is independent of the magnetic field or the Fermi energy, and this leads
to unprecedented growth in the thermopower and the thermoelectric figure of merit. We further show that even
relatively small fields, such that ωcτ ∼ 1 (where ωc is the cyclotron frequency and τ is the scattering time), are
sufficient to produce a more than 100% increase in the figure of merit.
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I. INTRODUCTION

In an electrically conductive system at finite temperature,
the quasiparticle excitations that carry electric current also
carry heat current. The magnitude of the heat current density
JQ at a particular value of the electric field is described by the
Peltier conductivity tensor α̂. In particular, in the presence of
an electric field E and a gradient of temperature T , the electric
and thermal current densities are given by [1]

J = σ̂E − α̂∇T, (1)

JQ = T α̂E − κ̂∇T . (2)

Here, J is the electric current density, σ̂ is the electrical con-
ductivity tensor, and κ̂ is the thermal conductivity tensor. The
Peltier conductivity tensor α̂ is related to the thermoelectric
tensor Ŝ by Ŝ = σ̂−1α̂.

At temperatures much lower than the Fermi temperature,
the thermoelectric response coefficients α̂ and Ŝ due to charge
carriers are typically proportional to kBT/EF � 1, where kB

is the Boltzmann constant and EF is the Fermi energy [1].
EF is typically very large in a good metal, which leads to
a small magnitude of the thermoelectric response. Thus the
thermoelectric response coefficients are typically appreciable
only in systems with relatively low Fermi energy, for example
in doped semiconductors.

During the last decade there has been a surge of interest in
the thermoelectric properties of materials with topological or
otherwise unconventional band structure. (See, for example,
Refs. [2–9].) The electronic contribution to the thermoelectric
response coefficients α̂ and Ŝ reflect the properties of the
quasiparticle dispersion. In this way, measuring α̂ or Ŝ pro-
vides a way of studying the nature of electronic quasiparticles.

Experiments on transverse thermoelectric response com-
monly focus on the Nernst effect, in which a voltage gradient
is measured in the direction transverse to an applied temper-
ature gradient (e.g., Refs. [10–12]). However, in a sufficiently
strong magnetic field even the diagonal component of the

thermopower (the Seebeck coefficient Sxx) can take a value
that is independent of the disorder scattering. In fact, in a
recent paper, we showed that in three-dimensional Dirac or
Weyl semimetals this large-field value of Sxx can be enor-
mously enhanced by a sufficiently strong magnetic field [13].

The usefulness of the Nernst coefficient Sxy for studying
the intrinsic band structure, and the independence of the
Seebeck coefficient Sxx on disorder at large field, can both be
viewed as a consequence of the off-diagonal component of α̂

having a large dissipationless contribution. In this paper, we
study this off-diagonal component αxy, which we refer to as
the “thermoelectric Hall coefficient,” in detail. We calculate
its value for three-dimensional Dirac/Weyl semimetals as a
function of magnetic field, temperature, and carrier density,
and we contrast the results with the behavior of αxy for
conventional Schrödinger quasiparticles (studied in detail in
Ref. [14]), for which the kinetic energy varies quadratically
with momentum. In both cases, the value of αxy attains a
maximum at a particular value of magnetic field. Strikingly,
however, for Dirac/Weyl semimetals the value of αxy settles
into a plateau at large magnetic field, such that the quantity
αxyvF /T is quantized, where vF is the Fermi velocity in the
field direction. This is shown in Fig. 4.

In the remainder of this paper, we calculate αxy using the
relation

αxy = JQ
y

T Ex
, (3)

in which the temperature is taken to be uniform across the
system and the electric field E is taken to be in the x direction.
We calculate the thermoelectric Hall response using two com-
plementary approaches. First, we consider the dissipationless
limit, where the transport scattering time diverges and all
heat current is provided by quantum Hall edge channels (see
Fig. 1). Second, we use a quasiclassical Boltzmann equation
description to consider the case where the transport scattering
time τ is finite. These two descriptions agree in the case where
ωcτ � 1, where ωc is the cyclotron frequency, provided that
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FIG. 1. Schematic illustration of electron (e−) and hole (h+)
currents along edge states in the dissipationless limit, where the
electric field E is perpendicular to the electric current J and to the
magnetic field B.

multiple Landau levels are occupied. Finally, we also use
the Boltzmann equation to study the Seebeck coefficient Sxx.
While Sxx in the dissipationless limit, which corresponds to
high fields ωcτ � 1, was exhaustively studied in Ref. [13],
here we focus on the case of small fields ωcτ ∼ 1. We show
that even relatively low fields are sufficient to enhance Sxx

in Dirac materials, increasing the figure of merit of thermo-
electric devices by ≈100%. This result is in contrast to the
case of Schrödinger materials, where Sxx remains constant at
small fields if one assumes an energy-independent value of τ .
We focus everywhere in this paper on the “electron diffusion”
contribution to the thermopower; the effects of phonon drag
are left for a future work.

The remainder of the paper is organized as follows. Sec-
tion II gives a general expression for αxy in the dissipationless
limit, which largely recapitulates the canonical derivations in
Refs. [14–16]. Section III discusses the quasiclassical approx-
imation, and gives a general expression for αxy in terms of
the Hall conductivity, which we describe using the Boltzmann
equation. Section IV describes the results for Schrödinger
particles, using both approximations, and Sec. V gives the
results for Dirac quasiparticles. We close in Sec. VI with a
summary and discussion.

II. DISSIPATIONLESS LIMIT

In cases when the scattering rate is small compared to
the cyclotron frequency, ωcτ � 1, both the Hall conductivity
σxy and the thermoelectric Hall coefficient αxy can be calcu-
lated using the quantum Hall edge formalism developed by
Halperin [15] and by Girvin and Jonson [16]. For simplicity,
we focus here on the “Hall brick” geometry (see Fig. 1),
in which the sample is taken to have a finite extent W in
x direction. The magnetic field is taken to be along the
z direction. We describe the electron eigenstates using the
Landau gauge A = xBŷ, where A is the vector potential, so
that the states are parameterized by their quasimomenta ky and
kz. The corresponding eigenfunctions are centered at a lateral
position x0(ky) = kyl2

B, where lB = (h̄/eB)1/2 is the magnetic
length.

In the absence of a confining potential in the x direction,
the energy levels are highly degenerate and do not depend
on ky. The corresponding electron energy is then given by
ε = ε0

n (kz ), where n is the Landau level index. The function

FIG. 2. Landau levels εn(ky, kz ) in the presence of a confining
potential in the x direction. In the Schrödinger case, the states with
negative energies ε < 0 (red lines) are absent. Dashed lines denote
momenta corresponding to states located near the boundaries of the
Hall brick, ky = ±W/2l2

B. We assume that the magnetic length is
much smaller than the width of the brick, lB � W , such that bulk
bands remain nearly flat.

ε0
n (kz ) depends on the quasiparticle dispersion, as we describe

below for the cases of Schrödinger and Dirac particles. In the
presence of a confining potential in x direction, however, the
energy levels disperse with ky also, so that ε = εn(ky, kz ), as
illustrated in Fig. 2.

The total current in the y direction is given by

Iy = e

Ly

∑
all states

vynF (ε − μ), (4)

where Ly is the size of the brick in the y-direction, vy is
the y component of the velocity of a state with energy ε,
nF (ε) = [1 + exp(ε/kBT )]−1 is the Fermi-Dirac distribution,
and μ is the electrochemical potential. To derive an explicit
expression for the current, we recall that the electron velocity
in y direction is given simply by vy = (1/h̄)∂ε(ky, kz )/∂ky.
The presence of an electrostatic potential difference Vx be-
tween the two edges of the brick implies a spatial variation
of the electrochemical potential μ. Given that the states with
different ky are centered at different positions x0(ky) = kyl2

B,

this spatial variation can be cast into the effective dependence
of μ on ky, i.e., μ(ky) � μ0 + eVxx/W = μ0 + eVxl2

Bky/W .
Here μ0 is the electrochemical potential in the absence of an
electric field. Expanding then the Fermi distribution to the first
order in Vx, we find

Iy = −e2

h̄

Vxl2
B

W Ly

∑
kz,ky,n

Nnky
∂εn(ky, kz )

∂ky

× ∂

∂ε
nF [εn(ky, kz ) − μ0], (5)

where Nn is the degeneracy of the level with energy εn (for a
given ky and kz), and for brevity, we will suppress the subscript
0 in μ0 hereafter.

If the magnetic field is sufficiently strong that W � lB, the
energy bands in the bulk remain nearly flat as a function of ky
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(up to exponentially small corrections), and the corresponding
contribution to the total current Iy can be neglected due to
the smallness of the velocity vy. Consequently, the most
significant contribution to Iy is due to the familiar quantum
Hall edge states, and one can set ky ≈ ±W/2l2

B in Eq. (5). This
assumption allows us to change the summation variable ky to
ε. Performing then the integration over ε explicitly, we find

σxy = Iy

VxLz
= σ e

xy − σ h
xy, (6)

where Lz is the size of the brick in the z direction and the
electron and hole contributions to the conductivity, σ e

xy and
σ h

xy, respectively, are given by

σ e
xy = e2

2π h̄

∫ ∞

−∞

dkz

2π

∑
n:ε0

n>0

NnnF
[
ε0

n (kz ) − μ
]
,

σ h
xy = e2

2π h̄

∫ ∞

−∞

dkz

2π

∑
n:ε0

n<0

Nn
(
1 − nF

[
ε0

n (kz ) − μ
])

. (7)

Strictly speaking, the bulk value of the Landau level energy
ε0

n (kz ) in the above expression should be substituted with
ε0

n (ky = 0, kz ); however, in the limit W � lB considered in
this paper, they are approximately equal, ε0

n (ky = 0, kz ) ≈
ε0

n (kz ). The second contribution in Eq. (7), σ h
xy, represents a

sum over negative-energy Landau levels in the valence band.
For Schrödinger particles, where the valence band is very
far from the chemical potential, the contribution σ h

xy can be
neglected. However, the contribution from these negative Lan-
dau levels plays a significant role for Dirac/Weyl semimetals
at finite temperature and sufficiently large magnetic field, as
we show below.

In order to describe the Hall conductivity σxy at a given
magnetic field and electron concentration n0, one should intro-
duce the self-consistency condition for the chemical potential
μ:∫ ∞

0
dε ν(ε)nF (ε − μ) −

∫ 0

−∞
dε ν(ε)[1 − nF (ε − μ)] = n0.

(8)

Here, the first term on the left-hand side represents the number
of electrons per unit volume, and the second term is the
number of holes. The bulk density of states ν(ε) is given by

ν(ε) = eB

2π h̄

∑
kz,n

Nnδ
[
ε − ε0

n (kz )
]
, (9)

where eB/2π h̄ is the number of flux quanta per unit area.
The second term in Eq. (8) is absent for Schrödinger particles,
since ν(ε < 0) = 0 in that case.

Combining together Eqs. (6)–(9), one easily finds the fa-
mous result for the Hall conductivity,

σxy = en0

B
, (10)

which is typically explained classically by noting that in the
dissipationless limit the electron current is entirely due to the
transverse E × B drift of all electrons with the drift velocity
vd = Ex/B in the y direction.

Analogously, one can derive a general expression for the
thermoelectric Hall coefficient αxy. In the presence of a poten-
tial difference Vx, the total heat current in y direction is equal
to

IQ
y = − e

h̄

Vxl2
B

W Ly

∑
kz,ky,n

Nnky × [εn(ky, kz ) − μ]

× ∂εn(ky, kz )

∂ky

∂

∂ε
nF [εn(ky, kz ) − μ]. (11)

This equation differs from Eq. (5) by the factor εn(ky, kz ) − μ

within the sum, which describes the energy carried by each
electron or hole state. Assuming, as with Iy, that the main
contribution to the heat current is due to the edges at ky ≈
±W/2l2

B, one can easily perform integration over ky, resulting
in

αxy(B, T ) = IQ
y

TVxLy
= e

2π h̄Lz

∑
n,kz

Nns

(
ε0

n (kz ) − μ

kBT

)
. (12)

Here we have introduced the entropy per electron state

s(x) = −kB[nF ln nF + (1 − nF ) ln(1 − nF )]

= kB

[
ln

(
1 + ex

) − x

1 + e−x

]
. (13)

This connection between αxy and entropy has previously
been discussed for Schrödinger particles [14], and here we
demonstrate that it is also valid more generically, and can be
applied, for example, to the case of Dirac particles.

Finally, we note that the Seebeck coefficient Sxx, which
plays a crucial role in determining the figure of merit of
thermoelectric devices [13], is generally defined as

Sxx = Syy = IQ
y

T Iy
= αxxσxx + αxyσxy

σ 2
xx + σ 2

xy

. (14)

In the dissipationless limit, where σxy � σxx, it has the simple
form [13]

Sxx = αxy

σxy
= B

2π h̄n0

∑
n,kz

Nns

(
ε0

n (kz ) − μ

kBT

)
. (15)

III. QUASICLASSICAL APPROXIMATION

The approach used in the previous section is universal in
the strong magnetic field limit, ωcτ � 1. However, at small
magnetic field, this condition is violated, and quasiparticle
scattering must be taken into account. The most straightfor-
ward way to account for the finite scattering rate is within the
Boltzmann quasiclassical theory. In this description, the gen-
eral expressions for the conductivity and the thermoelectric
coefficients (both longitudinal and Hall parts) are

σxx(xy) =
∫

dε

(
−∂nF

∂ε

)
σxx(xy)(ε),

αxx(xy) = 1

eT

∫
dε (ε − μ)

(
−∂nF

∂ε

)
σxx(xy)(ε). (16)
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Within the Boltzmann approach, the energy-dependent con-
ductivity is given by(

σxx(ε)
σxy(ε)

)
= 1

3

e2ν(ε)v2
F (ε)τ (ε)

1 + ω2
c (ε)τ 2(ε)

(
1

ωc(ε)τ (ε)

)
. (17)

In should be emphasized that, in general, the Fermi velocity
vF , the cyclotron frequency ωc, and the scattering time τ (in
addition to the density of states ν) are functions of energy,
and they depend on the type of particle dispersion and on
the mechanism for quasiparticle scattering. In what follows,
however, we focus for simplicity on a model with constant
(energy-independent) scattering time τ .

In the limit when both the cyclotron energy and the tem-
perature are smaller than the Fermi energy, h̄ωc, kBT � EF ,

one can evaluate the integrals in Eqs. (16) using a Sommerfeld
expansion, yielding

σxx(xy) ≈ σxx(xy)(ε)|ε=EF ,

αxx(xy) ≈ π2

3

k2
BT

e

d

dε
σxx(xy)(ε)

∣∣∣∣
ε=EF

. (18)

The Seebeck coefficient can then be found by inserting these
equations into Eq. (14). In the limit h̄ωc, kBT � EF , the result
can be written as

Sxx ≈ π2

6

k2
BT

e

d

dε
ln

(
σ 2

xx(ε) + σ 2
xy(ε)

)∣∣∣∣
ε=EF

= π2

6

k2
BT

e

d

dε
ln

(
ν2(ε)v4

F (ε)τ 2(ε)

1 + ω2
c (ε)τ 2(ε)

)∣∣∣∣
ε=EF

. (19)

The first equation is equivalent to the longitudinal component
of the usual Mott formula for the thermopower at low temper-
ature,

Ŝ = π2

3

k2
BT

e
σ̂−1 d σ̂

dε

∣∣∣∣
ε=EF

.

The quasiclassical expressions (16)–(19) are applicable
when a large number of Landau levels is filled, i.e., at suf-
ficiently weak magnetic fields that h̄ωc � EF . However, if
the scattering time τ is sufficiently long, then there exists a
window of magnetic fields such that 1/τ � ωc � EF /h̄. The
first inequality in this chain implies that transport is essentially
dissipationless, while the second implies that the quasiclassi-
cal approach is valid. Thus, in this window of magnetic fields,
the quasiclassical result coincides with the dissipationless
result from Sec. II. By merging the two descriptions we can
therefore obtain the result for αxy and Sxx over the whole range
of magnetic field.

IV. SCHRÖDINGER PARTICLES

We now apply the general formalism from the previous
two sections to the familiar case of Schrodinger particles,
as considered, e.g., in Ref. [14]. This scenario is realized,
for example, in heavily doped semiconductors. Assuming, for
simplicity, an isotropic band with mass m, the bulk Landau
levels have energy ε0

n (kz ) given by

ε0
n (kz ) = h̄ωc

(
n + 1

2

)
+ h̄2k2

z

2m
, (20)

where n is a non-negative integer and the cyclotron frequency
ωc = eB/m. Here we also neglect the effects of Zeeman
splitting, which amounts to an assumption that the effective
g factor is small. In this case, the degeneracies of all Landau
levels (at fixed ky) are the same, and are given simply by
the number Nf of electron flavors (which includes the spin
degeneracy). The density of states is then given by

νS (ε) = Nf Be
√

2m

(2π h̄)2
Re

∞∑
n=0

1√
ε − h̄ωc(n + 1/2)

, (21)

where the superscript S stands for “Schrödinger.”
Using the general expression (12) for the dissipationless

limit, we find for the thermoelectric Hall coefficient αxy

αS
xy = eNf

2π h̄

∞∑
n=0

∫ ∞

0

dkz

π
s

(
ε0

n (kz ) − μ

kBT

)
, (22)

where the function s(x) is defined by Eq. (13), and the
chemical potential μ as a function of density n0, temperature
T , and magnetic field B must be self-consistently determined
from Eq. (8). The behavior of αS

xy as a function of magnetic
field is shown in Fig. 3.

Limiting cases of the general expression (22) for the dissi-
pationless limit can be understood as follows. For definiteness,
we focus on the case when the temperature is much smaller

than the Fermi energy, kBT � EF = (3π2h̄3n0/Nf m
√

2m)
2/3

.
At sufficiently small magnetic fields that h̄ωc � EF , the
density of states remains unchanged to the leading order
in magnetic field, ν(ε � h̄ωc) ≈ Nf m

√
2mε/2π2h̄3, and the

chemical potential coincides with the Fermi energy, μ ≈ EF .
In this limit, we find for the thermoelectric Hall coefficient

αS
xy ≈

(
Nf π

6

)2/3 n1/3
0 mk2

BT

h̄2B
. (23)

On the other hand, when the magnetic field is large enough
that h̄ωc becomes larger than the Fermi energy, only the states
within the zeroth Landau level contribute to transport. In this
case, the density of states associated with the lowest Landau
level is

ν = Nf Be
√

2m

(2π h̄)2

1√
ε − h̄ωc/2

(24)

and the chemical potential is given by

μ − h̄ωc

2
≈ 2π4h̄4n2

0

me2B2N2
f

� h̄ωc. (25)

In the limit of small temperatures kBT � μ − h̄ωc/2, the
entropy s ≈ (π2/3)k2

BT ν(μ), so that the thermoelectric Hall
coefficient is

αS
xy ≈ e2k2

BT N2
f mB

12π2h̄4n0
. (26)

This result is valid when the magnetic field is in the range
h̄n2/3

0 /e � B � h̄2n0/e
√

mkBT .

When the magnetic field is increased even further, so that
B � h̄2n0/e

√
mkBT , the Fermi energy relative to the bottom

of the lowest Landau level becomes smaller than kBT . In this

155123-4



THERMOELECTRIC HALL CONDUCTIVITY AND FIGURE … PHYSICAL REVIEW B 99, 155123 (2019)

0 5 10 15 20
0

0.5

1

1.5

10-3 10-2 10-1 100 101 102
10-3

10-2

10-1

100

101

102 (a)

(b)

(30)

(23)

(26)

FIG. 3. The thermoelectric Hall coefficient αxy of Schrödinger
particles in three dimensions as a function of magnetic field B.
(a) A double-logarithmic plot of αxy, showing both the result in the
dissipationless limit (thick blue line) and the semiclassical result
(thin red line) corresponding to a scattering time τ = 50(vF n1/3

0 )−1,
with vF = h̄(6π 2n0/Nf )1/3/m being the Fermi velocity at zero mag-
netic field. The labeled dashed lines show the limiting results of
Eqs. (30), (23), and (26), respectively. The temperature is taken to
be T = 0.1h̄vF n1/3

0 /kB. (b) αxy vs B in linear scale, as given by the
semiclassical calculation, calculated for a large enough temperature
that quantum oscillations are washed out (T = 1 × h̄vF n1/3

0 /kB).
Different curves are labeled according to their value of the scattering
time τ , with τ0 = (vF n1/3

0 )−1. In both plots, the units of magnetic
field are B0 = h̄n2/3

0 /e, and units of αxy are α0 = ekBn1/3
0 /h̄.

limit the chemical potential becomes negative (as in a classical
ideal gas) with respect to the bottom of the lowest band:

μ − h̄ωc

2
≈ kBT ln

[
(2π h̄)2n0

BeNf
√

2πmkBT

]
< 0. (27)

In this limit, electrons are well described by a classical
Boltzmann distribution, leading to

αS
xy ≈ n0kB

B
ln

[
Nf Be

√
2πmkBT

(2π h̄)2n0

]
. (28)

Equations (22)–(28) are valid when electron scattering can
be completely ignored. Equation (23), in particular, implies
that in this dissipationless limit the value of αS

xy diverges as
1/B in the limit of small magnetic field. In reality, however,
this divergence of αS

xy is cut off by the finite scattering time,
which truncates the divergence when the magnetic field is
small enough that ωcτ < 1. This truncation can be described
using the quasiclassical approach developed in Sec. III. The
result at low temperatures kBT � EF can be obtained directly
from the Sommerfeld expansion, Eq. (18), with the Fermi
velocity given by vF (ε) = √

2ε/m and the density of states
given by its zero-field value ν(ε) ≈ Nf m

√
2mε/2π2h̄3. If one

assumes an energy-independent scattering time τ , then αxy is
given by

αSQC
xy ≈

(
Nf π

6

)2/3 n1/3
0 k2

BTe

h̄2

ωcτ
2

1 + ω2
cτ

2
. (29)

As expected, Eq. (29) reproduces the dissipationless result
of Eq. (23) in the limit of weak disorder, ωcτ � 1. At lower
magnetic fields, it smoothly crosses over to

αSQC
xy ≈

(
Nf π

6

)2/3 n1/3
0 k2

BTe2τ 2B

h̄2m
. (30)

Thus, the value of αxy attains a maximum at ωcτ = 1, as can
be seen in Fig. 3.

V. DIRAC PARTICLES

In this section, we discuss in detail the thermoelectric Hall
coefficient for three-dimensional Dirac materials, which have
an energy-independent Fermi velocity vF and are the main
focus of this paper. If one assumes, for simplicity, that vF

is isotropic, then the Landau levels in the bulk are described
by [17]

ε0
n (kz ) = sign(n)vF

√
2eh̄B|n| + h̄2k2

z , (31)

where n is an integer (positive or negative). All levels with n 
=
0 (and fixed ky and kz) have the same degeneracy Nf , which
is equal to the number of Weyl nodes in Weyl semimetals and
is equal to twice the number of nodes in Dirac semimetals. It
should be noted that Nf is always even because of the fermion
doubling theorem. The level with n = 0, however, requires
extra care. At nonzero kz, the n = 0 Landau level splits into
two levels ε0

±(kz ) = ±vF h̄|kz|, each of which has degeneracy
Nf /2. With this precaution, the density of states is given by

νD(ε) = Nf Be

2π2h̄2vF

⎛
⎝1

2
+ Re

∞∑
n=1

|ε|√
ε2 − 2h̄v2

F eBn

⎞
⎠, (32)

where the index D stands for “Dirac.”
The general expression for αxy in the dissipationless limit

is given by

αD
xy = eNf

2π h̄

∞∑
n=0

′
∫ ∞

0

dkz

π

[
s

(
ε0

n (kz ) − μ

kBT

)

+ s

(
ε0

n (kz ) + μ

kBT

)]
, (33)
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FIG. 4. The thermoelectric Hall coefficient αxy of a three-
dimensional Dirac/Weyl semimetal as a function of magnetic field
B. (a) A double-logarithmic plot of αxy, showing both the result in
the dissipationless limit (thick blue line) and the semiclassical result
(thin red line) corresponding to a scattering time τ = 50(vF n1/3

0 )−1.
The labeled dashed lines show the limiting results of Eqs. (40),
(34), and (36), respectively. The temperature is taken to be T =
0.1h̄vF n1/3

0 /kB. (b) αxy versus B in linear scale, as given by the
semiclassical calculation, calculated for a large enough temperature
that quantum oscillations are washed out (T = 1 × h̄vF n1/3

0 /kB).
Different curves are labeled according to their value of the scattering
time τ , with τ0 = (vF n1/3

0 )−1. At large B, αxy saturates to the value
given by Eq. (36), indicated by the dashed line. In both plots,
the units of magnetic field are B0 = h̄n2/3

0 /e, and units of αxy are
α0 = ekBn1/3

0 /h̄.

where the notation
∑∞

n=0
′
is used to mean that there is an extra

factor 1/2 multiplying the n = 0 term of the sum, and ε0
0 (kz )

should be understood as ε0
+(kz ) in the above expression. The

first term inside the brackets of Eq. (33) corresponds to the
electron contribution, while the second term is due to holes.
The behavior of αD

xy as a function of magnetic field is shown
in Fig. 4.

In the limit of sufficiently weak magnetic field that
many Landau levels are occupied, B � E2

F /(h̄ev2
F ), and of

sufficiently low temperature that kBT � EF =
h̄vF (6π2n0/Nf )1/3, the density of states is well
approximated by its zero-field, zero-temperature value,
ν(ε) ≈ Nf ε

2/2π2h̄3v3
F , and the chemical potential coincides

with the Fermi energy at zero field, μ ≈ EF . The
thermoelectric Hall coefficient is then given by

αD
xy =

(
Nf π

4

6

)1/3 k2
BT n2/3

0

h̄vF B
. (34)

On the other hand, when the magnetic field is made strong
enough that B � E2

F /(h̄ev2
F ), the system enters the extreme

quantum limit, in which only the zeroth Landau level con-
tributes to αxy. In this limit, the chemical potential is given by

μ = 4π2 h̄2vF n0

Nf Be
, (35)

leading to a thermoelectric Hall coefficient

αD
xy = π2

3

ek2
BT Nf

(2π h̄)2vF
. (36)

Strikingly, and unlike in the Schrödinger case, at large mag-
netic fields αD

xy does not decay to zero and it retains no de-
pendence on the electron density or the Fermi energy. Instead,
αxy plateaus at large magnetic field, with the quantity αxyvF /T
achieving a quantized value that depends only on universal
constants and on the number Nf of fermion flavors. (In cases
of anisotropic Fermi velocity, the relevant value of vF in this
expression is the velocity in the magnetic field direction.) This
quantized result for αxy is valid so long as the Landau level
spacing vF

√
h̄eB is much larger than both the zero-field Fermi

energy EF and the thermal energy kBT .
Finally, at large enough temperatures that kBT is larger than

the Landau level spacing, kBT � vF

√
h̄eB, EF , the chemical

potential is given by

μ ≈ 6h̄3v3
F n0

Nf k2
BT 2

� kBT, (37)

leading to a thermoelectric Hall coefficient

αD
xy ≈ 7π2

90

k4
BT 3Nf

h̄3v3
F B

. (38)

As in the low-temperature case, Eq. (36), there is no depen-
dence on the electron concentration.

As in the case of Schrödinger particles, the thermoelectric
Hall coefficient varies as αD

xy ∝ 1/B at small fields in the
dissipationless limit. This divergence is truncated, however,
at sufficiently small magnetic fields that the ωcτ < 1. To
describe this regime, we, again, use the quasiclassical ap-
proach of Sec. III. Focusing on the low-temperature limit
kBT � EF , and assuming that many Landau levels are filled,
vF

√
h̄eB � EF , we directly apply the Sommerfeld expansion

(18) to extract αD
xy. The density of states in this regime is given

by ν(ε) ≈ Nf ε
2/2π2h̄3v3

F , while the Fermi velocity vF is an
energy-independent constant. An important difference with
the Schrödinger case is that the cyclotron frequency for Dirac
electrons depends on energy: ωc(ε) = eBv2

F /ε. Collecting
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FIG. 5. The Seebeck coefficient Sxx of a three-dimensional
Dirac/Weyl semimetal as a function of magnetic field B. The plot
shows the result in the dissipationless limit (thick blue line) and
the semiclassical result (thin red line) corresponding to a scattering
time τ = 50(vF n1/3

0 )−1. The labeled dashed lines show the value
of Eq. (41) in the limits of ωcτ � 1 and ωcτ � 1, respectively.
The temperature is taken to be T = 0.1h̄vF n1/3

0 /kB. In both plots,
the units of magnetic field are B0 = h̄n2/3

0 /e, and units of αxy are
α0 = ekBn1/3

0 /h̄. The linear increase in Sxx with B in the extreme
quantum limit is described in detail in Ref. [13].

everything together, we find

αDQC
xy ≈ Nf

18

e2k2
BT vF τ 2B

h̄3

1 + 3ω2
c (EF )τ 2(

1 + ω2
c (EF )τ 2

)2 , (39)

where the Fermi energy is given by EF = h̄vF (6π2n0/Nf )1/3.
In the limit of weak scattering, EF � eBv2

F τ , we repro-
duce Eq. (34) obtained for the dissipationless limit. On the
other hand, when the magnetic field is weak enough that
ωc(EF )τ � 1, we arrive at

αDQC
xy ≈ Nf

18

e2k2
BT vF τ 2B

h̄3 . (40)

Let us now discuss the behavior of the Seebeck coefficient
Sxx and the thermodynamic figure of merit ZT in Dirac
materials. The behavior of Sxx as a function of magnetic
field is shown in Fig. 5. As we show below, the energy
dependence of the cyclotron frequency in these materials has
remarkable consequences for both Sxx and ZT . Indeed, as
is clear from Eq. (19), the quasiclassical expression for the
Seebeck coefficient in the low-temperature and small-field
limit is given by

SDQC
xx ≈ π2k2

BT

3eEF

2 + 3ω2
c (EF )τ 2

1 + ω2
c (EF )τ 2

. (41)

(Here we have again assumed a constant scattering time τ .)
From this expression, one can immediately see that the See-
beck coefficient at zero field is 3/2 times smaller than that at
ωc(EF )τ � 1. Since the figure of merit ZT of thermoelectric
devices is proportional to S2

xx (see Ref. [13] for a detailed
discussion), a magnetic field for which ωcτ > 1 produces a
value of ZT in Dirac materials that is enhanced by more
than 100% relative to the zero-field case. Such a magnetic

field is, in general, much weaker than the value required to
achieve the extreme quantum limit, which was the primary
focus of Ref. [13]. This enhancement of ZT at relatively
low fields should be contrasted with the case of Schrödinger
materials. For such materials, as can be seen from Eq. (19), the
Seebeck coefficient remains a constant at small fields and low
temperatures h̄ωc(EF ), kBT � EF , provided the scattering
time is a constant.

We emphasize that the enhancement of Sxx with magnetic
field is a direct consequence of the dependence of the cy-
clotron frequency on energy. In case of an arbitrary (isotropic)
dispersion relation ε(p), the solution of the Boltzmann equa-
tion gives a cyclotron frequency ωc(ε) = eB[ε′(p)/p]|p=p(ε).
It is interesting to note, by examining Eq. (19), that in the
case of a power-law dispersion ε(p) ∝ pγ , Sxx is enhanced by
a weak (ωcτ ∼ 1) magnetic field if γ < 2, and suppressed if
γ > 2. For Schrödinger particles, γ = 2, the Seebeck coeffi-
cient remains a constant at small magnetic fields.

Finally, in the limit of high temperature, kBT �
vF

√
h̄eB, EF , one cannot apply the Sommerfeld expansion

(18) anymore, and one must use the general expression (16)
instead. Since chemical potential [Eq. (37)] is small in this
case, it can be neglected, leading to

αDQC
xy ≈ Nf k2

BT vF e2Bτ 2

6π2h̄3

∫ ∞

−∞

x4ex

(1 + ex )2

dx

x2 + ω2
c (kBT )τ 2

≈
{

7π2

90
k4

BT 3Nf

h̄3v3
F B

, ωc(kBT )τ � 1
Nf k2

BT vF e2Bτ 2

18h̄3 , ωc(kBT )τ � 1
. (42)

In the dissipationless limit, ωc(kBT )τ � 1, this expression
agrees with the result of Eq. (38).

VI. SUMMARY AND DISCUSSION

In this paper, we have presented a calculation of the ther-
moelectric reponse coefficients in Dirac and Weyl semimetals,
focusing in particular on the thermoelectric Hall coefficient
αxy and the thermopower Sxx. Our most notable results con-
cern the enhancement of αxy and Sxx relative to the familiar
case of Schrödinger particles. For example, applying a suf-
ficiently strong field that ωcτ � 1 results in an enhancement
of Sxx [see Eq. (41)] that corresponds to a more than 100%
increase in the thermoelectric figure of merit ZT (in a model
where τ is energy-independent). For Schrödinger particles, on
the other hand, there is no such enhancement. At even larger
fields, such that the chemical potential falls into the zeroth
Landau level and the system enters the extreme quantum limit,
Sxx grows linearly with field without saturation. This growth is
accompanied by a striking plateau in αxy [see Eq. (36)], such
that the quantity αxyvF /T takes on a quantized value. This is
qualitatively different from the case of Schrödinger particles,
for which αxy decays as 1/B at large fields and Sxx saturates at
a value of order kB/e.

So far we are unaware of any published experimental
measurements of αxy in a Dirac or Weyl semimetal at large
magnetic field. However, the predictions of this paper should
be readily testable in Dirac or Weyl semimetals with low
electron density, such as Pb1−xSnxSe [9] or ZrTe5 [18,19].
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The enhancement of Sxx with magnetic field was observed in
Pb1−xSnxSe in Ref. [9].

Throughout the work, we assumed that the main contribu-
tion to the thermoelectric coefficients is either from a single
Dirac or Schrödinger band. For many materials, however,
there are multiple bands intersecting the Fermi level, and
each of these provides a contribution to the thermoelectric
response. Since the effects studied in our work are essentially
single-particle phenomena, the contributions to αxy and Sxx

from different bands simply add up, so the generalization to
this case is straightforward.

A natural extension of the work presented here is to the
case of a massive Dirac dispersion, for which the zero-field

dispersion relation has the form E± = ±
√

(
/2)2 + h̄2v2
F k2.

(Here, the labels ± refer to the conduction and valence bands,
respectively, and 
 is the energy gap between them.) While
an exact calculation for this case is left for a later work,
one can generally expect the thermoelectric behavior for such
gapped Dirac materials to be similar to either the gapless
Dirac case or the Schrödinger case, depending on whether
the thermal energy and the Fermi energy are large or small
compared to 
. In particular, if kBT � 
, then the band gap
is unimportant and one can describe both αxy and Sxx using
the results in Sec. V. On the other hand, if both kBT and the
zero-field Fermi energy EF are much smaller than 
, then the
thermoelectric response is dominated by the low-momentum
states near the band edge, for which the energy varies quadrat-
ically with momentum, and the thermoelectric response is
well-described by the Schrödinger-case results of Sec. IV. In
the case where EF � 
 � kBT , then at zero magnetic field
the chemical potential is high in the conduction band, and
the system behaves like a Dirac system (Sec. V). However,
at high enough magnetic field that B � h̄2vF n0/(Nf e
), the
chemical potential falls and closely approaches the bottom
of the conduction band, and the system behaves as in the
Schrödinger case (Sec. IV). We expect that this crossover
from Dirac-like to Schrödinger-like behavior with increasing
magnetic field can be relevant to Pb1−xSnxTe and PbTe, where
the band gap can reach 0.2–0.3 eV [20]. It should be noted
that the crossover from a “massless” to a “massive” Dirac
case may naturally occur at sufficiently high magnetic fields
in Weyl semimetals, which necessarily host multiple nodes.
Indeed, when the inverse magnetic length l−1

B = √
eB/h̄ be-

comes comparable to the separation between nodes in the
momentum space, the tunneling between the zeroth Landau

levels associated with the Weyl points of different chirality
may cause splitting and open up an energy gap [21–23]. In this
case, the Dirac mass 
 will strongly depend on the magnetic
field B.

It is also worth commenting on the case of layered Dirac
materials, which resemble a stack of two-dimensional Dirac
systems with a weak interlayer coupling energy t . In cases
where kBT � t , the interlayer coupling can be neglected and
the system is accurately described as a stack of indepen-
dent two-dimensional systems. In this case one can describe
the thermoelectric Hall conductivity by using the theory of
Girvin and Jonson [16] and dividing the value of αxy for
the two-dimensional case by the interlayer spacing. Such a
description may be relevant to recent experiments in ZrTe5,
where a three-dimensional quantum Hall effect was recently
discovered [19], and to graphite, in which a large Nernst effect
has been observed [24].

Finally, let us comment in more detail on the dependence
of our results on disorder. In two-dimensional quantum Hall
systems, the values of αxy and Sxx are affected by disorder,
since the presence of disorder tends to broaden the Landau
levels and therefore reduce the electron entropy when a given
Landau level is partially filled [25,26]. In contrast, our results
for αxy and Sxx in Dirac/Weyl semimetals at large magnetic
field are essentially unaffected by disorder. This independence
of αxy and Sxx on disorder can be understood as a consequence
of a density of states that has no dependence on energy in
the high-field limit. Indeed, in the extreme quantum limit in
a Dirac/Weyl semimetal, the density of states becomes an
energy-independent constant, ν ∼ 1/(h̄vF l2

B). Consequently
no “broadening” of the Landau level by disorder can affect its
value, provided that the Landau level spacing h̄vF /lB is much
larger than the disorder energy scale h̄/τ .
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