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A quantum scar—an enhancement of a quantum probability density in the vicinity of a classical periodic
orbit—is a fundamental phenomenon connecting quantum and classical mechanics. Here we demonstrate
that some of the eigenstates of the perturbed two-dimensional anisotropic (elliptic) harmonic oscillator are
strongly scarred by the Lissajous orbits of the unperturbed classical counterpart. In particular, we show that
the occurrence and geometry of these quantum Lissajous scars are connected to the anisotropy of the
harmonic confinement, but unlike the classical Lissajous orbits the scars survive under a small perturbation
of the potential. This Lissajous scarring is caused by the combined effect of the quantum (near)
degeneracies in the unperturbed system and the localized character of the perturbation. Furthermore, we
discuss experimental schemes to observe this perturbation-induced scarring.
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The harmonic oscillator (HO) is a linchpin in various
fields of physics [1]. The periodic orbits (POs) of the two-
dimensional (2D) anisotropic (elliptic) HO were first
investigated by Bowditch [2] and later in more detail
by Lissajous [3]. These Lissajous orbits are sensitive on
the frequency ratio of the confinement. In contrast, the
corresponding quantum eigenfunctions possess the same
rectangular symmetry as solved in terms of the Hermite-
Gaussian (HG) modes [4], regardless of the value of the
frequency ratio.
The HG modes can be experimentally studied from laser

transverse modes due to the analogy of the Schrödinger
equation with the wave equation [5]. On the other hand, the
HO has turned out to be a suitable prototype model for
semiconductor quantum dots (QDs) [6]. However, actual
QD devices are influenced by impurities and imperfections
(see, e.g., Refs. [7–10]). If high-energy eigenstates of a
generic, perturbed QDs were indeed featureless and ran-
dom, controlled applications in this regime would be
tedious to realize. Besides additional deflects, anisotropic
QDs have attracted general interest in connection with the
chaotic behavior as well as the properties in an external
magnetic field [11–17].
Nonetheless, in consequence of quantum interference,

the probability density of a quantum state can be concen-
trated along short unstable POs of the corresponding
chaotic classical system, and the quantum state bears an
imprint of the PO—a “quantum scar” [18,19]. The scarring
of a single-particle wave function is one of the most striking
phenomena in the field of quantum chaos [20]. The
notation of quantum scarring was introduced by one of
the present authors in Ref. [18]. Nowadays, quantum scars
have been reported in a diverse range of experiments [21–23]
and simulations [24–26]. Furthermore, an effect called

“quantum many-body scarring” has been hypothesized
[27,28] to cause the unexpectedly slow thermalization of
cold atoms, observed experimentally [29].
In this Letter, we describe a new kind of quantum

scarring present in a 2D anisotropic HO disturbed by local
perturbations such as impurity atoms. In this case, the scars
are formed around the Lissajous orbits of the corresponding
unperturbed system. In particular, we demonstrate that the
geometry of the observed scars depend, in a similar manner
as classical POs, on the frequency ratio of the confinement
potential, but unlike the POs in the classical system, the
scars show resilience against the alteration of the confine-
ment. We explain our findings by generalizing the mecha-
nism of recently discovered perturbation-induced (PI)
quantum scarring [30–32]. We also consider schemes for
observing these quantum scars experimentally.
In the following, all values and equations are given in

atomic units (a.u.). The Hamiltonian for a perturbed 2D
quantum elliptical HO is determined by

H ¼ 1

2
ð−i∇þAÞ2 þ 1

2
ðω2

xx2 þ ω2
yy2Þ þ V imp: ð1Þ

The magnetic field B is assumed to be oriented
perpendicular to the 2D plane and incorporated via the
vector potential A. The characteristic frequencies of the
harmonic confinement are described as ωx ¼ pω0 and
ωy ¼ qω0 and, for convenience, we set ω0 to unity. The
perturbation V imp is modeled as a sum of Gaussian bumps
with amplitude M and width σ; that is,

V impðrÞ ¼ M
X
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We consider the case where the bumps are scattered
randomly with a uniform mean density of two bumps
per unit square. In the energy range considered here,
E ¼ 50;…; 250, hundreds of bumps exist in the classically
allowed region. The full width at half maximum of the
Gaussian bumps 2

ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
σ is 0.235, comparable to the

local wavelength of the eigenstates considered. The ampli-
tude of the bumps is set to M ¼ 4, which causes strong
scarring in the studied energy regime.
The Schrödinger equation for the Hamiltonian in Eq. (1)

is solved by utilizing the ITP2D code [33] based on the
imaginary time propagation method. However, before
considering the quantum solutions of the perturbed HO,
we briefly discuss the unperturbed system, both classical
and quantum.
First, we consider classical POs in an anisotropic HO

without a magnetic field. In the following, the notation
(p; q) refers to the frequency ratio ωx=ωy ¼ p=q. Closed
curves exist only if the frequencies are commensurable;
i.e., the ratio ωx=ωy is rational. In our notation, this occurs
when p and q are relative primes, and the corresponding
closed curves are Lissajous orbits. Geometrically, the
particle has returned exactly to its starting position with
its original velocity after making p and q oscillations
between the x and y turning points, respectively. On the
other hand, if the frequencies are incommensurable, the
motion is quasiperiodic, resulting in ergodic behavior on
a torus [34].
On the quantum side, the unperturbed system is likewise

analytically solvable. The eigenstates of an anisotropic HO
can be expressed [35] as

Ψn;mðx; yÞ ¼ NHnð ffiffiffiffiffiffi
ωx

p
xÞHmð ffiffiffiffiffiffi

ωy
p

yÞe−1
2
ðωxx2þωyy2Þ; ð2Þ

where N is a normalization constant and Hmð·Þ is the
Hermite polynomial of order m. The corresponding
energy spectrum shows degeneracies at commensurable
frequencies.
In general, the solutions of an anisotropic HO can be also

examined analytically under a perpendicular magnetic field
[36], although here we focus on the zero-field case. In
addition, we want to emphasize the fact that the quantum
solutions presented in Eq. (2) have rectangular symmetry,
even in the limit of large quantum numbers. Hence, the
eigenstates in Eq. (2) do not show any features of classical
POs. In order to describe a classical particle, one can
construct [37] a coherent state for a one-dimensional HO,
more precisely, a wave packet whose center follows the
corresponding classical motion. Generalized to 2D, the
Schrödinger coherent state must be a wave packet with its
center mimicking a classical trajectory. This idea has been
employed to form stationary coherent states reflecting the
classical Lissajous orbits in terms of the time-dependent
Schrödinger coherent states [38]. Furthermore, coherent
states of this kind have been theoretically exploited to

reconstruct the experimental laser modes localized on
Lissajous orbits as a superposition of the HG modes
[39]. Nevertheless, this artificial reconstruction of laser
modes cannot explicitly manifest the quantum-classical
correspondence stemming from the Schrödinger equation.
When perturbed by randomly positioned Gaussian-like

bumps, some of the high-energy eigenstates of the aniso-
tropic HO are strongly scarred by Lissajous orbits of the
unperturbed system. Figure 1 shows an example of a strong
quantum scar resembling the corresponding alpha-shape
Lissajous orbit in the classical, unperturbed potential with
commensurable frequencies (2, 3). Furthermore, the pre-
sented alpha scar is counterintuitively oriented so that
it maximizes the overlap with the bumps (see below for
details).
Generally, strong quantum Lissajous scars are observed

at commensurable frequencies (p; q), where short classical
POs exist. Examples of these quantum Lissajous scars are
presented in Fig. 2. In addition to the example cases shown
in Fig. 2, we also observe Lissajous scars related to higher
commensurable frequencies (p; q) such as (2, 5), (3, 5),
or (4, 5). The eigenstate number varies between 500 and
3900. At given commensurable frequencies (p; q), the scars
appear in two distinct shapes due to the anisotropy of
the oscillator: the enhanced probability distribution related
to a scar either resembles an open string or a continuous
loop, thus, are called strings and loops, respectively.
We stress that the Lissajous scars are not a rare

occurrence at commensurable frequencies [40]; the pro-
portion of strongly scarred states among all the first 4000
eigenstates varies from 10% to 60% at amplitude M ¼ 4.

FIG. 1. Alpha scar visible in the probability density of the
eigenstate n ¼ 3453 in an elliptical harmonic potential (1, 2)
perturbed by Gaussian-like bumps. The state is strongly scarred
by the alpha-shape Lissajous orbit of the corresponding unper-
turbed potential represented as a solid red line. Blue markers
denote the locations of the bumps. It is noteworthy that multiple
bumps are located on the scar path.
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Furthermore, some eigenstates contain a trace of two
scars, e.g., a combination of two strings or a string and
a loop. In addition to Lissajous scars, we observe quantum
states that show features of classical “bouncing-ball-like”
motion.
As the bump density is decreased, the eigenstates of

the perturbed system begin to gain traces of rectangular
symmetry stemming from the unperturbed system. On the
other hand, if the bump density is increased, the scars
fade into completely delocalized states. The same effect is
observed in the variation of the bump amplitude and width.
However, the Lissajous scars show persistence toward a
modulation of the confinement, i.e., a deviation from the
commensurable frequencies, as shown and analyzed below.
To further analyze the Lissajous scarring, we compute

the density of states (DOS) as a sum of the states with a
Gaussian energy window of 0.001 a.u. Figure 3 visualizes
the DOS for a few thousand lowest energy levels as a
function of the ratio ωx=ωy. Figure 3(a) corresponds to
an unperturbed system, and the dashed vertical lines mark
the accidental degeneracies at the ratio (p; q) shown in
Fig. 2. The proportion and strength of scarred states depend
on the degree of degeneracy in the unperturbed spectrum:
more and stronger scars appear when more energy levels
are (nearly) crossing. Figure 3(b), on the other hand,
illustrates the commensurable frequency (1, 2) that the
perturbation caused by the bumps is sufficiently weak
enough to not completely destroy this degeneracy structure.
We supplemented the scar analysis by introducing a

localization measure (α value) for a normalized eigenstate
n defined as αn ¼ Z

R jψnðrÞj4dr, where the normalization
factor Z is determined by the classical area for the energyEn
in the unperturbed system [41]. As the α value describes the
localization of the probability density of a state, we employ it
here to estimate qualitatively the strength of scarring.
If the confinement deviates from a commensurable

frequency (p; q) while keeping V imp otherwise unchanged,

the scars persist. Figure 3(c) presents examples of strong,
looplike Lissajous scars in the neighborhood of the
commensurable frequency (1, 2), marked with the deviation
δ from the corresponding frequency ratio ωx=ωy ¼ 0.5.
We want to emphasize that the classical POs that the
scars resemble do not exist in the perturbed or even in
the unperturbed system when the frequency ratio ωx=ωy

differs from the commensurable frequency (1, 2). Although

FIG. 2. Examples of Lissajous scars in a two-dimensional
anisotropic harmonic oscillator with commensurable frequencies
perturbed by potential bumps. The geometries of the scars depend
on the confinement potential (p; q), which also defines the shape
of the POs in the unperturbed system. At a fixed (p; q), the scars
can be divided into two subgroups: strings (upper row) and loops
(lower row).

(a)

(b) (d)

(c)

FIG. 3. (a) Density of states of the unperturbed two-dimen-
sional harmonic oscillator as a function of anisotropy parameter
ωx=ωy. The dashed vertical lines indicate the commensurable
(p; q) that correspond to a significant abundance of scarred
eigenstates in the perturbed case (see Fig. 2). Two distinct limits
are also seen in (a): namely, the unbounded case (ωx=ωy → 0)
and the isotropic oscillator (ωx=ωy ¼ 1). (b) Density of states of
the corresponding perturbed system as a function frequency ratio
in the neighborhood of the commensurable frequency (1, 2)
demonstrating that the bumps are sufficiently weak enough not to
fully destroy the (near) degeneracy of the unperturbed system.
(c) Examples of Lissajous scars in the vicinity of the commen-
surable frequency (1,2) labeled with the value δ describing
the deviation from the ideal frequency ratio ωx=ωy ¼ 0.5. The
scarring level of the quantum state is estimated by the α value.
Note that the scars exist, although the corresponding unperturbed
classical PO does not. (d) Normalized average of α value as a
function of the deviation δ. The scarring weakens as the deviation
δ increases according to the normalized average, as well as the α
value of the individual example scars in (c).
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scarred states exist outside the optimal frequency ratio, the
strength of the scarring decreases as indicated by the α
value of the scars shown in Fig. 3(c).
For a more complete picture, we also compute an average

α̃ðδÞ. More precisely, we consider 30 looplike Lissajous
scars, such scars as in Fig. 3(c), at different deviations in the
interval jδj ¼ 0.01 indicated by the black vertical lines in
Fig. 3(b). The normalized average α̃ð0Þ=α̃ðδÞ shown in
Fig. 3(b) reveals that the scarring becomes weaker as the
deviation δ from the commensurable frequency increases.
Along with the average scarring strength, the number of
scars reduces with increasing deviation. In practice, the
scars connected to the commensurable frequency (1, 2)
have vanished outside the deviation interval presented in
Fig. 3(b). However, both effects can be compensated at a
certain level by adjusting the perturbation.
Before delving into the mechanism behind these oddly

ordered structures, we want to address two aspects. First,
the considered amplitude of the bumps (M ¼ 4) is small in
comparison to the total energy,making each individual bump
a small perturbation. Nonetheless, together the bumps form
sufficient perturbation to destroy classical long-time stabil-
ity; any stable structures present in the otherwise chaotic
Poincaré surface of section are minuscule compared to
ℏ ¼ 1.
Second, the Lissajous scars cannot be explained by

dynamical localization [42,43]: it corresponds to localization
in angular momentum space, whereas the scars are localized
in position space. In addition, dynamical localization is
not able to explain that scars generally orient to coincide
with as many bumps as possible (see also Refs. [30,32]).
Furthermore, even though similar in appearance, the
conventional scar theory [18,19,44,45] cannot describe
the Lissajous scarring, as it would require the existence of
short, moderately unstable POs in the perturbed system.
To explain the Lissajous scarring, we generalize the

PI scar theory beyond circularly symmetric potentials
[30–32]. Recently, PI scars have drawn attention since
they have been demonstrated to be highly controllable [32]
and can be utilized to propagate quantum wave packets in
the system with high fidelity [30]. Combined, this may
open a door to coherently modulate quantum transport in
nanoscale devices by exploiting the scarring. In addition,
the PI scars have been analyzed [46] in the framework
of quantum chaos. Furthermore, the PI scarring is expected
to be manifested in a dense random gas as a polyatomic
trilobite Rydberg molecule [47].
For PI scars to occur, we only require two ingredients:

the existence of special (nearly) degenerate states called a
“resonant set” in the unperturbed system, and the individual
bumps need to have a short spatial range. Hence, we extend
the PI scarring mechanism to hold for a larger set of
systems with a lower symmetry than circular symmetry
[30–32,46], such as an anisotropic oscillator.
In an anisotropic oscillator, the resonant sets stem from

the accidental degeneracy occurring at commensurable

frequencies; e.g., the dashed lines in Fig. 3(a) correspond
to frequency ratios with substantial degeneracy. These
resonant sets are related to a family of classical POs,
which ensures that some linear combinations of the states in
a resonant set are scarred by Lissajous orbits.
A moderate perturbation forms eigenstates that are linear

combinations of a single resonant set. Based on the
variational theorem, the states corresponding to extremal
eigenvalues extremize the perturbed Hamiltonian. Because
the states in a resonant set are (nearly) degenerate, this
basically means extremizing the perturbation. In the
extremization, the system prefers the scarred states since
the bumps causing the perturbation are localized [48].
Thus, scarred states can effectively maximize (minimize)
the perturbation by selecting paths coinciding with as many
(few) bumps as possible. As a result, the extremal eigen-
states arising from each resonant set often contain scars of
the corresponding PO.
The elliptical oscillator has also experimental relevance:

it realistically models disordered quantum with soft boun-
daries. Thus, it provides a platform, as a quantum counter-
part of classical billiard, to investigate the nature of
quantum chaos, e.g., with a statistical analysis of the energy
levels [20].
An important avenue of future research is to analyze

the effect of PI scarring on the conductance of the QD in
more detail (see Refs. [30,32]) by employing realistic
quantum transport calculations. Previous studies (see,
e.g., Refs. [24,49]) have shown that the effect of (conven-
tional) scarring can be observed in the conductance
fluctuations. Moreover, open QDs are suitable for wave
function imaging based on shifts in the energy of the single-
particle resonances, induced by an AFM tip [50–52]. In
addition, the scarred eigenstates of an electron in a QD may
be measured with quantum tomography [53]. For com-
pleteness, we want to address that a PI scar can be even
created by a single bump, generated in a controlled manner
by, e.g., a conducting nanotip [54].
Outside of QDs, we suggest that Lissajous scars may

be possible to detect in optical systems, frequently
employed to observe conventional quantum scars (see,
e.g., Refs. [55–57]) and to study quantum chaos in general
[20]. For some types of polarization, the three components
of the electric field decouple, and thereby, for example, a
quasimonochromatic light can be described in terms of a
scalar wave equation [58]. Further, in the paraxial approxi-
mation (at the lowest order), the slowly variating amplitude
of the field formally satisfies a single-particle Schrödinger
equation in a dielectric medium with spatially dependent
refractive index [59–61]. Thus, the formulation allows us
to interpret the light propagation as the evolution of a
massive particle [61–64], and Schrödinger-like behavior,
such as scarring, should emerge. In particular, with a
suitable choice of the refractive index, this “optical
Schrödinger equation” (see, e.g., Ref. [61]) reduces to
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an anisotropic HO, such as arising from the quantum
Hamiltonian (1) without a magnetic field. The potential
bumps may be realized by creating small, localized devia-
tions of the refractive index, which can be even randomly
positioned. Therefore, optical fibers [60,65] may be
employed to experimentally investigate PI scars, along
with other quantum phenomena.
In conclusion, we have shown that a two-dimensional

anisotropic harmonic oscillator supports quantum scars
induced by randomly scattered potential bumps. These
quantum Lissajous scars are relatively strong, and their
abundance and geometry are related to commensurable
frequencies. This counterintuitive phenomenon emerges
from the extended concept of PI scarring as a combination
of resonant sets and the localized nature of the perturbation.
We also considered the experimental consequence of the
quantum Lissajous scars. In particular, an optical approach
may indicate a path to experimentally realize these scars in
optical fibers by utilizing the analogy between the quantum
theory and classical electromagnetism. Lissajous scars are
hence a peculiar example of quantum suppression of
classical chaos, not only for establishing a relationship
between quantum states and classical POs in the 2D
anisotropic harmonic oscillator, but also for optics.
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