
Nature | Vol 601 | 13 January 2022 | 211

Article

A crossbar array of magnetoresistive
memory devices for in-memory computing

Seungchul Jung1, Hyungwoo Lee1, Sungmeen Myung1, Hyunsoo Kim1, Seung Keun Yoon1,
Soon-Wan Kwon1, Yongmin Ju1, Minje Kim1, Wooseok Yi1, Shinhee Han2, Baeseong Kwon2,
Boyoung Seo2, Kilho Lee3, Gwan-Hyeob Koh3, Kangho Lee2, Yoonjong Song3,
Changkyu Choi1, Donhee Ham1,4ಞᅒ & Sang Joon Kim1ಞᅒ

Implementations of arti!cial neural networks that borrow analogue techniques could
potentially o"er low-power alternatives to fully digital approaches1–3. One notable
example is in-memory computing based on crossbar arrays of non-volatile memories4–7
that execute, in an analogue manner, multiply–accumulate operations prevalent in
arti!cial neural networks. Various non-volatile memories—including resistive
memory8–13, phase-change memory14,15 and #ash memory16–19—have been used for such
approaches. However, it remains challenging to develop a crossbar array of
spin-transfer-torque magnetoresistive random-access memory (MRAM)20–22,
despite the technology’s practical advantages such as endurance and large-scale
commercialization5. The di%culty stems from the low resistance of MRAM, which would
result in large power consumption in a conventional crossbar array that uses current
summation for analogue multiply–accumulate operations. Here we report a 64 × 64
crossbar array based on MRAM cells that overcomes the low-resistance issue with an
architecture that uses resistance summation for analogue multiply–accumulate
operations. The array is integrated with readout electronics in 28-nanometre
complementary metal–oxide–semiconductor technology. Using this array, a two-layer
perceptron is implemented to classify 10,000 Modi!ed National Institute of Standards
and Technology digits with an accuracy of 93.23 per cent (software baseline: 95.24 per
cent). In an emulation of a deeper, eight-layer Visual Geometry Group-8 neural network
with measured errors, the classi!cation accuracy improves to 98.86 per cent (software
baseline: 99.28 per cent). We also use the array to implement a single layer in a ten-layer
neural network to realize face detection with an accuracy of 93.4 per cent.

Whereas the current success of artificial intelligence (AI)23 is achieved
by computing artificial neural networks (ANNs) in digital processors1–3,
new processor architectures that employ analogue techniques are
being keenly sought in the hope of reducing power dissipation. A promi-
nent example is in-memory computing architectures based on the
memory crossbar array4–7. With each memory storing a synaptic weight
as its conductance value, the crossbar array executes the vector–matrix
multiplication, the most prevalent ANN algebra24. Each column yields
a dot product between the input voltage vector fed to the rows and the
column weight vector, by first multiplying the memory conductance
and the input voltage at each row–column cross-point via Ohm’s law
and subsequently summing the resulting cross-point currents along the
column via Kirchhoff’s law (Methods; Extended Data Fig. 1). This physi-
cal matrix multiplication, or analogue multiply–accumulate (MAC)
operation, consumes far less power than its digital counterpart. The
overall in-memory computing architecture for an ANN would consist
of multiple crossbar arrays, with each crossbar array accompanied

by readout electronics (data converters) and digital circuits before
being connected to the next crossbar array.

The power savings have driven active efforts to realize crossbar
arrays using non-volatile memories (NVMs). Of the four NVMs that
can be produced at volume—that is, resistive random-access mem-
ory8–13, phase-change random-access memory14,15, flash memory16–19
and spin-transfer-torque magnetoresistive random-access memory
(STT-MRAM, or MRAM for brevity)20–22,25,26—the first three have fre-
quently been used for crossbar arrays, but MRAM crossbar arrays have
not been implemented for analogue ANN computing, despite simula-
tion studies25. The challenge is low resistance of MRAM27,28 (Methods),
with which conventional crossbar arrays would consume considerable
power, defeating the purpose of the crossbar array.

Here we fill this gap and implement an MRAM crossbar array (Fig. 1).
We overcome the low-resistance issue with a new crossbar array archi-
tecture that replaces the standard current sum with a resistance sum
in the analogue MAC operation. This 64 × 64 array, integrated with

https://doi.org/10.1038/s41586-021-04196-6

Received: 30 December 2020

Accepted: 28 October 2021

Published online: 12 January 2022

 Check for updates

1Samsung Advanced Institute of Technology, Samsung Electronics, Suwon-si, South Korea. 2Foundry Business, Samsung Electronics, Yongin-si, South Korea. 3Semiconductor R&D Center,
Samsung Electronics, Hwaseong-si, South Korea. 4John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA. ᅒe-mail: donhee@seas.harvard.edu;
sangjoon0919.kim@samsung.com

https://doi.org/10.1038/s41586-021-04196-6
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-021-04196-6&domain=pdf
mailto:donhee@seas.harvard.edu
mailto:sangjoon0919.kim@samsung.com

212 | Nature | Vol 601 | 13 January 2022

Article

time-to-digital converter (TDC) readout electronics in 28-nm comple-
mentary metal–oxide–semiconductor (CMOS) technology, is used for
image classification and face-detection tasks. Our intention is not to
compete with other memory types for in-memory computing, but to
complement them. No single memory type has dominated electronics
thus far, as different types bring their own merits and drawbacks. In the
case of MRAM, it excels in terms of precision, energy, speed, stability
and endurance5, whereas its 1-bit nature would require an increased net-
work size or a longer computing time to achieve a given performance29.
In-memory computing may also develop into different applications
with differing memory types. It is from this perspective that the lack of
MRAM crossbar arrays for AI computing represents a critical gap, and
by bridging this gap, our device may help to advance the frontiers of
in-memory computing.

MRAM crossbar array
The MRAM is a current-controlled magnetic tunnel junction (MTJ)
consisting of two ferromagnetic layers surrounding a thin insulator,
and is located between two metal layers in CMOS technology20. The
magnetizations of the two magnetic layers can be parallel or antiparal-
lel. The parallel state exhibits a low resistance (RL) across the layered
structure, whereas the antiparallel state exhibits a high resistance (RH).
These two resistances representing 1 bit tend to be noticeably smaller
than other NVMs30. In our case, RL ≈ 13 kΩ and RH ≈ 26 kΩ (Methods), and
each includes the resistance of a field-effect transistor (FET) switch, as
every MTJ is accompanied by a FET switch.

Owing to the small RL and RH, the standard crossbar array with
current-sum columns would consume considerable power. To over-
come this, our crossbar array introduces resistance-sum columns, with
the goal still being to obtain the dot product. This architecture begins

with a new bit-cell design (bit-cell refers to the element at a row–column
intersection). Each bit-cell combines two paths in parallel, with each path
formed by one MTJ and one FET switch in series (Fig. 1d). The FET gate of
the left path is driven by a binary input voltage IN (VL = 0 V, or VH = 1.8 V),
whereas the FET gate of the right path is driven by the voltage comple-
mentary to IN. The left MTJ–FET path stores a synaptic weight of W (RL
or RH; each of these is the sum of the MTJ and FET switch resistances),
whereas the right MTJ–FET path stores the weight complementary to W.
Then IN selects either the left or right path to yield the resistance of the
chosen path (RL or RH) as the bit-cell output. Figure 1e shows the bit-cell
output for all four combinations of IN and W. If we assign 1 and −1 for VH
and VL, and 1 and −1 for RH and RL, the output is the binary multiplication
between IN and W. This switching-based analogue XNOR that outputs
a resistance replaces the Ohm’s law cross-point multiplication that
outputs a current in the standard crossbar array.

Each column strings these bit-cells in series (Fig. 1c; Extended Data
Fig. 2). The individual bit-cell output resistances are then summed to
yield the column resistance R, which is the column output. This column
resistance sum replaces the Kirchhoff’s law-based column current sum
in the standard crossbar array (a similar resistance sum was studied in
simulations with flash memory19). A column R is the dot product of the
input vector consisting of IN values for all rows (which we call the IN
vector) and the vector consisting of the column W values (which we call
the W vector). R can assume any value between 64 RL and 64 RH (or −64
and 64) spaced by RH – RL (or 2), depending on IN and W vectors. This
architecture lowers power consumption for small RL and RH.

We first verify the dot product operation with a d.c. measurement
(Fig. 2c). To this end, we set W = RH across the entire array and apply
200 IN vectors for each of the 65 possible R values. Since there are
over 200 ways to distribute RH and RL values down a column to obtain
each possible R—except R = 64 RL, 63RL + RH, RL + 63RH and 64RH—its

IN0

W0,0 W63,0

IN1

IN2

IN3

IN63

R0 R1 R2 R3 R4 R63

W0,1

W0,2

W0,3

W0,63

W63,1

W63,2

W63,3

W63,63

Wi,j Wi,j

INj

INj

MRAM
array

MRAM
array

TDC
readout

electronics

TDC
readout

electronics

W/R
electronics

W/R
electronics

ININ

50 μm

2 mm

(IN,W) = (–1,–1) (–1, +1) (+1, –1)

+1 –1

+1 –1

(+1, +1)

OUT = +1 (RH) –1 (RL) –1 (RL) +1 (RH)

–1 –1+1 –1 +1+1

–1 +1 –1 –1+1 +1

d

a

b

c

e

Fig. 1 | MRAM crossbar array. a, b, Micrograph (b) and layout (a) of the 64 × 64
MRAM crossbar array with the peripheral circuit integrated in 28-nm CMOS
technology. The crossbar array is sandwiched between the write/read (W/R)
electronics at the top and the TDC readout electronics at the bottom. The input
data controller (IN) is on the left. c, d, MRAM crossbar array architecture. Each
bit-cell (d), occupying a conservatively large area of 0.933 µm2 for this
fabrication, consists of two FET switches and two MTJs, and these bit-cells are
connected in series to form a column in the crossbar array (c). In each bit-cell, the
gates of the left and right FETs are driven respectively by voltage IN (either VH (1)

or VL (−1)) and its complementary. The left and right MJT–FET paths store
respectively weight W (either RH (1) or RL (−1)) and its complementary. Each of
the resistances, RH and RL, adds in the FET switch resistance to the MTJ resistance.
The MTJ write/read lines are omitted here for simplicity (Methods; Extended
Data Fig. 2). e, Four configurations of a bit-cell for four possible combinations of
IN and W: {IN, W} = {−1, −1}, {−1, 1}, {1, −1} and {1, 1}, and their corresponding bit-cell
output resistance, which is either RH (1) or RL (−1). Each column that links these
bit-cells in series (c) has a total resistance R, which is the sum of all bit-cell output
resistances in the column, and serves as the output of the column.

Nature | Vol 601 | 13 January 2022 | 213

corresponding 200 IN vectors are chosen all randomly. For each of
the four exceptions, some or all of the corresponding 200 IN vectors
are redundant: for example, only one IN vector can produce R = 64 RH.

With this set-up, any given IN vector would ideally produce the same
R for all columns, as the corresponding distribution of RH and RL val-
ues will be identical at all columns. Thus for each given IN vector, we
measure an averaged R by dividing the combined d.c. current measured
from all columns by 64 (Methods). Figure 2c shows R measured in this
way for all of the IN vectors applied. The overall linearity confirms the
dot product operation. The figure shows variations for each expected
R except the two end points. This is because the different distributions
of RH and RL values down a column for each expected R—except the
two end points—yield slightly differing R values for two reasons. First,
RH and RL differ from bit-cell to bit-cell due to process variations, that is,
because every MTJ is slightly different in its physical properties due to
imperfections in the fabrication processes, as is every FET (Methods).
Second, even with no process variations, different distributions of
RH and RL used to produce the same expected R lead to different biases
for FETs down the column, making RH and RL values position dependent:
this is a purely data (IN vector)-dependent error. At either end of Fig. 2c,
only a single R value is measured because there is only one way RH and RL
can be distributed in each column (only one possible IN vector) there.

Time-domain array readout
For ANN computation, for a given IN vector, we extract R for each col-
umn from its time delay associated with the explicit lumped capacitor
CL ≈ 33 fF at the column end and parasitic capacitors distributed down

the column (~2.1 fF per bit-cell) (Fig. 2a, b). The 4-bit TDC measures the
time for the column-end voltage to rise from zero to the reference voltage
VREF, charging the capacitors. Different distributions of RL and RH values
down a column (caused by differing IN vectors) for the same expected
R give slightly different time delays due to the distributed capacitors.
Therefore, R extracted from the delay contains data-dependent errors
(Methods; Extended Data Fig. 3). Alternatively, analogue-to-digital
converters (ADCs) could read R after converting it into a voltage with a
current injection. Although we chose TDCs to meet our power and area
constraints, ADCs could be chosen depending on design goals. While R is
distributed from −64 to 64 spaced by 2 (6-bit), our 4-bit TDC measures R
from only −46 to 48, truncating the outliers. This seldom affects the ANN
accuracy, as R lies far more often in the middle of the range31.

To assess the crossbar array combined with the TDCs, we set W = RH
across the entire array, and applied (for each possible R) 1,000 IN vec-
tors (which are all different, unless R is one of the near-end values) and
measured R from each column using TDCs. This leads to more than
four million R (dot product) measurements. The top panel of Fig. 2d
shows the measurement error distribution across all possible R values
at each column (in the ANN computation we add offset digital values
to some columns to compensate the column-to-column variations;
Methods; Extended Data Fig. 4). The bottom panel of Fig. 2d shows the
error distribution across all columns at each possible R value. These
errors arise from the aforementioned analogue noise—process- and
data-dependent variations of RH and RL, and data-dependent time
delays—and one other source of analogue noise: the TDC non-idealities.
The mean absolute error of the roughly four million dot products is
0.47 bits after the digital offset calibration. In this experiment with

R
0

R
1

R
2

R
63

VREF

CL0 CL1 CL1 CL63

VCOL1VCOL0 VCOL2 VCOL63

Grab Grab Grab Grab

D0 [3:0] D1 [3:0] D2 [3:0] D63 [3:0]

0000
~1111

Column number

MAC values

0 63

+64–64 0

Correct ±1 ±2 ±3 ≥±4

0

65,000

0

64,000

C
ou

nt
s

C
ou

nt
s

0 8 16 24 32 40 48 56 64

1.0

1.2

1.4

1.6
1.5

1.3

1.1

0.9
0.8
0.7
0.6

Number of RH in a column

C
ol

um
n

re
si

st
an

ce
 (M

Ω
) 10 kΩ

10 kΩ10 kΩ

a c

d

VREF

VCOL0 VCOL1

V (V)

t

Code

t4b'0010 4b'0101

Grab Grab

b

Fig. 2 | Characterization of the MRAM crossbar array. a, TDC readout
electronics for the crossbar array. Each column with a total resistance R exhibits
a time delay in charging both an explicit lumped capacitor CL at the column end
and parasitic capacitors distributed along the column (not shown). We measure
the time delay for the column-end voltage VCOL to increase from zero to VREF using
a 4-bit digital counter. We extract R from this delay. b, Illustration of the delay
measurements for two columns with differing R values, where their end voltages
are depicted with respect to time, t. The lower R yields a digitized delay 0010
whereas the higher R yields a digitized delay 0101. c, R measured in d.c., with
column-to-column variations averaged, for a broad variety of IN vectors with

W = RH across the whole array (that is, for each bit-cell, the weight of the left
MTJ–FET path is RH and that of the right path is RL). This d.c. measurement
bypasses the TDC by shorting every reset switch (not shown) parallel to each CL.
The voltage applied over the columns is 1.0 V. Two hundred IN vectors were
applied for each expected R value, as described in the text (see Methods for
details). d, Using the TDC, we measured R (dot product) from individual
columns for a broad variety of IN vectors (for each expected R value, we applied
1,000 IN vectors as described in the text) with W = RH across the whole array.
Top: error distribution across all possible R values for each column. Bottom:
error distribution across all columns for each possible R value.

214 | Nature | Vol 601 | 13 January 2022

Article

a 1.0 V supply for the TDCs, the array and TDCs dissipate 347 µW.
The power efficiency is 262 tera-operations per second per
watt (TOPS W–1), where a single operation is referenced to a 1-bit input
and a 1-bit weight in a bit-cell; with a 0.8 V TDC supply, power dissipa-
tion decreases to 225 µW while the error increases to 0.83 bits, with
a 405 TOPS W−1 power efficiency (Methods; Extended Data Table 1;
Extended Data Figs. 5 and 6).

AI computing
To apply our crossbar array to AI computing, we used a binary neu-
ral network (BNN) algorithm. The BNN algorithm accuracy32,33 can be
improved by representing each real-valued weight with multiple binary
values at the cost of network size34,35 or each real-valued input data as
a sequence of multiple binary numbers at the cost of computation
speed36. We use the latter strategy, expanding each input data into an
8-bit thermometer code, which helps to suppress noise29 (Methods).
Training is done in software, including analogue noise37.

We classified Modified National Institute of Standards and Tech-
nology (MNIST) digits using a two-layer BNN perceptron, which we
implemented by recycling the crossbar array. The perceptron had 784
terminals in the input layer to admit a 28 × 28 image, 128 neurons in the
first layer and 10 neurons for the 10 digits in the second layer (Fig. 3a).
Since our array size was 64 × 64, we updated the array weights 28 times

(Methods). A given set of weights was used eight times due to the 8-bit
thermometer-coded input data. Each time we updated the weights,
we scrambled the columns to remove systematic errors. Activation,
batch normalization and softmax were performed in software. In this
way, the array performed all MAC operations needed to classify 10,000
MNIST images. We repeated the 10,000-image classification three
times, obtaining a 93.23 ± 0.05% accuracy (Fig. 3b), the decrease in
which from the 95.24% software baseline arises from the analogue
noise. Errors collected from the 404 million dot products mostly fell
within ± 1 least significant bit (LSB) (Fig. 3c).

The accuracy of a neural network with more than two layers should
have a software baseline higher than 95.24%, the software baseline
for the accuracy of the two-layer perceptron. The deeper neural net-
work should also render the analogue noise effect less pronounced.
To demonstrate, we developed an emulator based on measured errors
(Methods; Extended Data Fig. 7). We first verified its fidelity by applying
it to the two-layer perceptron, obtaining an accuracy of 93.18 ± 0.09%,
which is within 0.2% of the hardware result (93.23 ± 0.05%). We then
emulated an eight-layer Visual Geometry Group (VGG)-8 neural net-
work, obtaining an accuracy of 98.86 ± 0.06% (baseline: 99.28%) in
classifying 10,000 MNIST digits.

Face detection—detecting whether there is a face in a scene—is
an emerging edge application for always-on cameras. When a face
is detected, more power-demanding face authentication can be

0

1

2

3

780

781

782

783

Terminal
784 nodes

L1
128 nodes

0

127

1

1

2

2

3

3
0

9

L2
10 nodes

0

63
64

127

704

767

768

783

0

63
64

127

704

767

768

783

0

63
64

127

L1[0:63] L1[64:127]

L2[0:9]

Total 0 1 2 3 4 5 6 7 8 9

100

50

In
pu

t

Output
0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0–1–2–3–4–5 1 2 3 4 5

41.8%

27.3%

5.8%

19.7%

3.1% 0.7% 0.3% 0.1% 0.1% 0.1% 0.1%

Error (LSB)

98.5 0 0.1 0
0 98.6 0 0

1.7 93.1 0.9 0.2
91.1
0.1 95.8

94.0
0.2 0.4 0

0.6 0
0.9

0.9 1.3 5.1

0.3
0.1 0.1

0.5 1.3 0.3 0.4 0.6 1.2
0.2 0.1 1.8 0.2 2.9 0.1 1.0 2.2 0.3
0.2 0.3 0.3 0.3 0.9 0.60.1 1.4
1.0 0.1 0.1 2.4 0.3 0.8 0.3 0.8 0.1
1.7 0.2 0.1 2.2 3.5 91.3 0.3
0.2 1.7 2.2 0.5 0.3 93.0 0.2 1.2
1.0 0.7 0.9 1.4 2.2 0.6 0.8 91.4 0.1

85.01.1 0.2 2.7 0.3 2.1 1.4

–6–7–8

0.1% 0.1% 0.1% 0% 0.2% 0.4%

6 7 8

0 0.1 0.2 0.3 0.4
0.50.10.30.3

a b

c

Software (baseline)
Measurement

C
la

ss
i!

ca
tio

n
ac

cu
ra

cy

Fig. 3 | Classification of 10,000 MNIST handwritten digits with a two-layer
perceptron neural network. a, Our fully connected two-layer perceptron has
an input layer with 784 terminals corresponding to a 28 × 28 pixel image, a first
layer with 128 neurons, and a second layer with 10 neurons corresponding to the
10 digits. For the matrix multiplication from the input to the first layer, we
updated the weights of our 64 × 64 crossbar array 26 times to cover 784 inputs
and 128 outputs. For the matrix multiplication from the first to the second layer,
the array weights were updated twice to cover 128 inputs and 10 outputs. Each
square at the bottom represents a crossbar array with a given weight update, so
there are a total of 26 + 2 = 28 squares. The orange coloured region inside a given

square indicates the used part of the crossbar array with the corresponding
weight update and the grey coloured region indicates the unused part.
b, Ten thousand MNIST images were classified with a 93.23 ± 0.05% accuracy
(performed three times; baseline: 95.24%). Top: classification accuracy for each
digit obtained by the software (red) and measurements (blue). Bottom: Per cent
distribution of the ten different output digits each input digit is classified into;
in each row, that is, for each input digit, one output digit is correct with the
corresponding percentage shaded in black, while the other nine are false.
c, Distribution of errors collected from the 404 million dot products produced
in this classification task.

Nature | Vol 601 | 13 January 2022 | 215

activated to see whether the face belongs to a particular individual
(Fig. 4b). This two-step scheme consumes far less power than con-
tinually performing face authentication (Fig. 4a). We demonstrate
our MRAM array for this face detection application by using it as the
seventh (convolution) layer in a ten-layer VGG-like model modified
from SqueezeDet38, with all the rest layers computed in software.
The seventh layer consists of a 10 × 7 × 128 feature map and 128 filters,
requiring 128 × 128 weights, which we covered with four array chips in
parallel (Fig. 4c, d). The experiment detected 1,851 faces from 2,000
scenes with maskless faces (92.5% accuracy; baseline: 95.0%) and 483
faces from 500 scenes with masked faces (96.6% accuracy; baseline:
98.6%). The overall accuracy was 93.4% (baseline: 95.7%). We also
detected faces in real time by combining the four array chips with a
camera (Supplementary Video 1).

Outlook
We have demonstrated an MRAM crossbar array, adding the MRAM
to other volume-producible NVMs in pursuit of low-power AI via
in-memory computing. Opportunities and challenges lie ahead.
Our 64 × 64 array is much smaller than digital MRAM memory macros.
This size constraint, particularly the row number, arises from analogue
noise, which would accumulate in the column R to eventually surpass
the readout LSB. Readout electronics may also limit the array size
(Methods). Constructing a system-on-a-chip AI processor that inte-
grates many such limited-size arrays with data converters and digital
electronics will be an important challenge for MRAMs, just as for other
NVMs. From a broader perspective, memory crossbar arrays could be
used not only for ANN computing but also offer a potential platform
for downloading biological neuronal networks to mimic the brain39.
The MRAM crossbar array demonstrated here thus widens the platform
choices for such biomimicry applications.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41586-021-04196-6.

1. Horowitz, M. Computing’s energy problem (and what we can do about it). In Proc.
International Solid-State Circuits Conference (ISSCC) 10−14 (IEEE, 2014).

2. Keckler, S. W., Dally, W. J., Khailany, B., Garland, M. & Glasco, D. GPUs and the future of
parallel computing. IEEE Micro 31, 7–17 (2011).

3. Song, J. et al. An 11.5TOPS/W 1024-MAC butterfly structure dual-core sparsity-aware
neural processing unit in 8nm flagship mobile SoC. In 2019 IEEE Int. Solid-State Circuits
Conference Digest of Technical Papers (ISSCC) 130−131 (IEEE, 2019).

4. Sebastian, A. et al. Memory devices and applications for in-memory computing. Nat.
Nanotechnol. 15, 529–544 (2020).

5. Wang, Z. et al. Resistive switching materials for information processing. Nat. Rev. Mater. 5,
173–195 (2020).

6. Ielmini, D. & Wong, H. P. In-memory computing with resistive switching devices. Nat.
Electron. 1, 333–343 (2018).

7. Verma, N. et al. In-memory computing: advances and prospects. IEEE Solid-State Circuits
Mag. 11, 43–55 (2019).

8. Woo, J. et al. Improved synaptic behavior under identical pulses using AlOx/HfO2
bilayer RRAM array for neuromorphic systems. IEEE Electron Device Lett. 37, 994–997
(2016).

9. Yao, P. et al. Face classification using electronic synapses. Nat. Commun. 8, 15199
(2017).

10. Wu, H. et al. Device and circuit optimization of RRAM for neuromorphic computing. In
2017 IEEE International Electron Devices Meeting 11.5.1−11.5.4 (IEEE, 2017).

11. Li, C. et al. Efficient and self-adaptive in-situ learning in multilayer memristor neural
networks. Nat. Commun. 9, 2385 (2018).

12. Chen, W. et al. CMOS-integrated memristive non-volatile computing-in-memory for AI
edge processors. Nat. Electron. 2, 420–428 (2019).

13. Yao, P. et al. Fully hardware-implemented memristor convolutional neural network.
Nature 577, 641–646 (2020).

14. Le Gallo, M. et al. Mixed-precision in-memory computing. Nat. Electron. 1, 246–253
(2018).

15. Ambrogio, S. et al. Equivalent-accuracy accelerated neural-network training using
analogue memory. Nature 558, 60–67 (2018).

Face authentication

Information Wake-up signal Evaluation board

Image sensor Face authentication

Information

Face with or
without a mask

Webcam and PC

10

7

Image sensor

7th layer

Owner

Owner

Face detection

128
128

10

7

128

2 3 41

a

b

c

d

128

Fig. 4 | Face detection for always-on sensing applications in edge devices.
a, b, Always-on cameras ultimately seek to perform face authentication
(recognition of a particular individual’s face, resolving fine details) to turn on
an edge device. a, If face authentication is continually performed for all objects
entering the scene, the power consumption would be too high due to heavy
computation. b, In contrast, face detection determines whether a face is
present in the scene or not (not whose face it is) and can be carried out using
much less power. Therefore, if higher-power face authentication computation

is activated only after a face is detected, overall much less power will be
consumed in identifying a particular individual’s face. c, d, Face detection
experiment with a ten-layer VGG-like neural network, where the seventh layer
(d) is implemented with four MRAM crossbar array chips in parallel (c). The face
detection accuracy for 2,000 scenes with maskless faces and 500 scenes with
masked faces is 93.4%. By combining this four-chip system with a camera (c), we
also performed face detection in real time (Supplementary Video 1).

https://doi.org/10.1038/s41586-021-04196-6

216 | Nature | Vol 601 | 13 January 2022

Article
16. Merrikh-Bayat, F. et al. High-performance mixed-signal neurocomputing with nanoscale

floating-gate memory cell arrays. IEEE Trans Neural Netw. Learn. Syst. 29, 4782–4790
(2018).

17. Wang, P. et al. Three-dimensional NAND flash for vector-matrix multiplication. IEEE Trans.
VLSI Syst. 27, 988–991 (2019).

18. Xiang, Y. et al. Efficient and robust spike-driven deep convolutional neural networks
based on NOR flash computing array. IEEE Trans. Electron Dev. 67, 2329–2335 (2020).

19. Lin, Y.-Y. et al. A novel voltage-accumulation vector-matrix multiplication architecture
using resistor-shunted floating gate flash memory device for low-power and high-density
neural network applications. In 2018 IEEE International Electron Devices Meeting
2.4.1−2.4.4 (IEEE, 2018).

20. Song, Y. J. et al. Demonstration of highly manufacturable STT-MRAM embedded in
28nm logic. In 2018 IEEE International Electron Devices Meeting 18.2.1−18.2.4 (IEEE, 2018).

21. Lee, Y. K. et al. Embedded STT-MRAM in 28-nm FDSOI logic process for industrial MCU/
IoT application. In 2018 IEEE Symposium on VLSI Technology 181−182 (IEEE, 2018).

22. Wei, L. et al. A 7Mb STT-MRAM in 22FFL FinFET technology with 4ns read sensing time
at 0.9V using write-verify-write scheme and offset-cancellation sensing technique. In
2019 IEEE Int. Solid-State Circuits Conference Digest of Technical Papers 214−216 (IEEE,
2019).

23. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
24. Yu, S. Neuro-inspired computing with emerging nonvolatile memory. Proc. IEEE 106,

260–285 (2018).
25. Patil, A. D. et al. An MRAM-based deep in-memory architecture for deep neural networks.

In 2019 IEEE International Symposium on Circuits and Systems (IEEE, 2019).
26. Zabihi, M. et al. In-memory processing on the spintronic CRAM: from hardware design

to application mapping. IEEE Trans. Comput. 68, 1159–1173 (2019).
27. Kang, S. H. Embedded STT-MRAM for energy-efficient and cost-effective mobile systems.

In 2014 IEEE Symposium on VLSI Technology (IEEE, 2014).
28. Zeng, Z. M. et al. Effect of resistance-area product on spin-transfer switching in

MgO-based magnetic tunnel junction memory cells. Appl. Phys. Lett. 98, 072512 (2011).
29. Kim, H. & Kwon, S.-W. Full-precision neural networks approximation based on temporal

domain binary MAC operations. US patent 17/085,300.

30. Hung, J.-M. et al. Challenges and trends in developing nonvolatile memory-enabled
computing chips for intelligent edge devices. IEEE Trans. Electron Dev. 67, 1444–1453
(2020).

31. Jiang, Z., Yin, S., Seo, J. & Seok, M. C3SRAM: an in-memory-computing SRAM macro
based on robust capacitive coupling computing mechanism. IEEE J. Solid-State Circuits
55, 1888–1897 (2020).

32. Hubara, I. et al. Binarized neural networks. In Advances in Neural Information Processing
Systems 4107−4115 (NeurIPS, 2016).

33. Rastegari, M., Ordonez, V., Redmon, J. & Farhadi, A. XNOR-Net: ImageNet classification
using binary convolutional neural networks. In 2016 European Conference on Computer
Vision 525−542 (2016).

34. Lin, X., Zhao, C. & Pan, W. Towards accurate binary convolutional neural network. In
Advances in Neural Information Processing Systems 345−353 (NeurIPS, 2017).

35. Zhuang, B. et al. Structured binary neural networks for accurate image classification and
semantic segmentation. In 2019 IEEE Conference on Computer Vision and Pattern
Recognition 413−422 (IEEE, 2019).

36. Shafiee, A. et al. ISAAC: a convolutional neural network accelerator with in-situ analog
arithmetic in crossbars. In 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture 14−26 (IEEE, 2016).

37. Liu, B. et al. Digital-assisted noise-eliminating training for memristor crossbar-based
analog neuromorphic computing engine. In 2013 50th ACM/EDAC/IEEE Design
Automation Conference 1−6 (IEEE, 2013).

38. Wu, B., Iandola, F., Jin, P. H. & Keutzer, K. SqueezeDet: unified, small, low power fully
convolutional neural networks for real-time object detection for autonomous driving. In
2017 IEEE Conference on Computer Vision and Pattern Recognition 129−137 (IEEE, 2017).

39. Ham, D., Park, H., Hwang, S. & Kim, K. Neuromorphic electronics based on copying and
pasting the brain. Nat. Electron. 4, 635–644 (2021).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2022

Methods
Conventional memory crossbar array
A conventional memory crossbar array is shown in Extended Data
Fig. 1a. A memory at each cross-point stores a synaptic weight as its
conductance value. A voltage vector representing the input data is fed
to the rows and, in response, currents flow from the array’s columns,
which form an output current vector. For input voltage Vj at the jth row,
the memory at the cross-point of the jth row and the ith column with
a conductance Gi,j generates a current I G V=i j i j j, , via Ohm’s law and all
such cross-point currents along the ith column are summed via Kirch-
hoff’s law to produce the following total current at the ith column:

∑I G V= (1)i
j

i j j,

This is the dot product between the input voltage vector and the
column weight vector. Therefore, the output current vector consisting
of all column currents is a multiplication of the array’s weight matrix
and the input voltage vector, as written out below (n is the number of
columns and m is the number of rows):





































































I
I
I

I

G G
G G

G G
G G

G G

G G

G G

G G

V
V
V

V

= (2)

n

m

m

n n

m

n n m m

1

2

3

1,1 1,2

2,1 2,2

1,3 1,

2,3 2,

3,1 3,2

,1 ,2

3,3 3,

,3 ,

1

2

3

⋮

⋯
⋯

⋮ ⋮
⋯

⋮ ⋱ ⋮
⋯

⋮

Such vector–matrix multiplications are prevalent in neural network
computation (Extended Data Fig. 1b).

MTJ resistance
When measured from all 8,192 MTJ–FET paths across the crossbar array,
RH ≈ 26 kΩ (standard deviation σ ≈ 2.0 kΩ) and RL ≈ 13 kΩ (σ ≈ 1.6 kΩ).
Each of these values includes the FET switch resistance, as every MTJ is
accompanied by a FET switch. While the MTJ resistances could in princi-
ple be increased by changing device geometry, it is difficult in practice.
For example, while reducing the MTJ area can increase its resistance,
the area is already minimized for the main market: digital memory.
Increasing the thickness of the insulator sandwiched between the two
magnetic layers could also increase the resistance but such a structure
would demand a higher write voltage or current, which may not be
possible in the CMOS technology in which the MRAM is embedded.

MTJ write/read operation
For each column, two data lines are prepared (as shown in Extended
Data Fig. 2a) to write and read MTJs. Extended Data Fig. 2b shows an
example of the write operation: the left MTJ in the top second bit-cell is
connected to the two data lines by turning on relevant switches. The left
data line connected to VWRITE = 1.5 V and the right data line connected to
ground write what corresponds to RL to the selected MTJ. The reversed
voltage (not shown in the figure), that is, the left data line connected
to ground and the right data line connected to VWRITE, writes what cor-
responds to RH to the selected MTJ. Extended Data Fig. 2c shows the
read operation on the left MTJ in the top second bit-cell. The left data
line is connected to a current source IREAD while the right data line is
connected to a fixed common voltage VCM. The voltage developed at
the current source node is R[1],left × IREAD + VCM, where R[1],left is the resist-
ance of the second bit-cell’s left MTJ–FET path. Comparison of this to
VREAD determines whether R[1],left is RH or RL.

Crossbar array weight update
Weights trained in software are programmed into the crossbar array
by repeating the MTJ write procedure described in MTJ write/read

operation section above, row by row. For a given row, all left MTJ–
FET paths of bit-cells are selected first, and then their respective W
weights are written simultaneously. Subsequently, all right MTJ–FET
paths of bit-cells of the same row are selected, and their respective
W-complementary weights are written. Each of the two writes takes one
clock cycle (clock frequency: 11.1 MHz). We repeat this programming
procedure row by row. Since VWRITE = 1.5 V and each writing current for
a given bit-cell path is well below 100 µA, the energy expenditure for
writing the entire array is less than ~110 nJ.

Details of the d.c. measurements
We apply a 1.0-V supply at the top of all columns and set W = RH all across
the array. We apply 13,000 (mostly different) IN vectors as described
in the main text. For any given IN vector, we measure 64 column d.c.
currents altogether, bypassing the lumped column-end capacitors by
short-circuiting the reset switches parallel to them (in this d.c. measure-
ment, our circuit allows us to measure only the total current combining
all 64 columns, while in the time domain it allows the measurement of
individual column R using the TDCs). Once the total d.c. current is meas-
ured, we divide it by 64 to obtain the per-column R. A given IN vector
gives exactly the same column distribution of RH and RL values across all
columns, thus the expected R corresponding to the IN vector is the same
for all columns. In other words, the divide-by-64 operation to obtain the
per-column R only averages the non-ideal column-to-column variations.
Figure 2c displays this per-column R measured for all IN vectors applied.

In Fig. 2c, the deviations of the measured R for a given expected R are
due both to the process- and data-dependent variations of RH and RL, as
explained in the main text, but due to the aforementioned averaging
(the divide-by-64 operation), the systematic data-dependent varia-
tions are more pronounced than the process variations. For instance,
in the middle point of Fig. 2c, the measured standard deviation (which
subsumes both process- and data-dependent variations of RH and RL) is
4.9 kΩ, whereas the pure process variation effect simulated at the same
point gives a standard deviation of up to 1.4 kΩ. For the actual ANN
computing done with the TDC, however, each column R is measured
individually without the divide-by-64 operation, and thus the process-
and data-dependent variations are more on a par with each other, both
contributing to the errors reported in Fig. 2d.

Data-dependent delay and associated error
In ANN computation, we extract the dot product R of a column from
the measured time delay of the column. The delay arises from R, the
explicit lumped capacitor CL ≈ 33 fF at the column end, and the parasitic
capacitors distributed along the column (Cp ≈ 2.1 fF per bit-cell). The
effect of the distributed parasitic capacitance is as appreciable as the
lumped capacitance in determining the delay. The Elmore model gives
the following time constant for the length-N column

∑ ∑τ kR C R C= + , (3)
k

N

k
k

N

k
=1

P
=1

L

where Rk is the resistance of the kth bit-cell, determined by the IN volt-
age and the W weight of the bit-cell, and is either RH or RL. At the same
time, the column resistance sum R is given by

∑R R= (4)
k

N

k
=1

If Rk is RH for all k, or RL for all k, τ of equation (3) is proportional to R of
equation (4) with a proportional constant, or effective capacitance, of

C N C C= (+ 1)(/2) + (5)P L

But for a general distribution of Rk along the column, τ of equation (3)
is not precisely proportional to R of equation (4). Since our goal is to

Article
extract the true R of equation (4) from the time delay proportional to τ
of equation (3), and our extraction scheme assumes a linear relationship
between τ and R, the central question is how much the correct nonlin-
ear τ vs R relationship defined by equations (3) and (4) deviates from
the approximate linear relationship τ = RC that our readout scheme
assumes. Note that this deviation, or error, originates from the data
dependent time delay seen in equation (3), which is the effect of the
distributed capacitors.

To assess, after setting W = RH for the entire column, we calculate
the estimated R = τ/C from equations (3) and (5) and the true R of equa-
tion (4) for a broad variety of IN vectors, which produce many different
distributions of RH and RL along the column. We apply 200 different IN
vectors to create 200 different combinations of RH and RL along the
column for each true R of equation (4) (we have already discussed how
we deal with the special situations that occur at near-end values of R in
the main text). Extended Data Fig. 3 shows the estimated R vs the true
R obtained for the large number of IN vectors. Here we have used fixed
values of RH and RL, ignoring the process- and data-dependent varia-
tions of RH and RL, to single out the error due purely to the distributed
capacitance effect. As can be seen from Extended Data Fig. 3, the linear
approximation is actually quite good, but deviations do exist for each
true R value due to the data-dependent delay of equation (3) stemming
from the distributed capacitors, except at the two end R values. If we
use a bigger lumped capacitor CL, this error becomes smaller, but it
comes at the expense of an increased area.

In summary, the distributed capacitance gives rise to data-dependent
time delay, even when individual RH and RL values are assumed to be
data independent, causing an error in the R extraction from the delay.
This error is on a par with the error due to the process- and
data-dependent variations of RH and RL seen in Fig. 2c (the d.c. data
of Fig. 2c do not involve any capacitance effect). In the actual cross-
bar array operation with the TDC readout, all of these analogue
noises—process- and data-dependent variations of RH and RL, and
data-dependent delays—will manifest in a mixed fashion.

Results of digital offset application
Extended Data Fig. 4 shows the error distribution modified from Fig. 2d,
after applying digital offsets to select columns.

Operating frequency
The time delay for the column-end voltage to reach the reference volt-
age (VREF) rising from zero ranges from 13 ns to 29 ns. The operating
frequency in principle can be set at the inverse of twice the maximum
time delay, which is 17.2 MHz. But in practice, digital control delay
should be also taken into account. This sets the operating frequency
at the lower 11.1 MHz.

Power consumption and efficiency
The power dissipation measured for each building block is shown in
Extended Data Table 1. The TOPS W–1 figure of merit in the table is calcu-
lated as follows. As each bit-cell performs two operations per clock cycle
(one for switching-based binary multiplication and one for accumula-
tion) with the clocking at 11.1 MHz, there are a total of 64 × 64 × 2 × 11.1
M operations per second. Dividing this number by the power consump-
tion measured for both the crossbar array and the readout electronics,
we obtain 405 TOPS W–1 (0.8-V supply for TDC readout electronics) or
262 TOPS W–1 (1.0-V supply for TDC readout electronics).

Supply and frequency dependence of performance
Power efficiency and mean absolute errors of dot products measured
at various TDC supply voltages and operating frequencies are shown
in Extended Data Fig. 5. A lower supply voltage increases the power
efficiency at the expense of increased errors (Extended Data Fig. 5a).
The error increases sharply above 15 MHz, because the clock duration
is too short to cover the time delay (Extended Data Fig. 5b).

Measurement set-up
The MRAM crossbar array chip is controlled by a micro controller unit
(MCU) on an evaluation board via a serial peripheral interface (SPI)
(Extended Data Fig. 6). The board is controlled by a PC (Python) via a
USB connection.

BNN algorithm
Imagine time-expanding each input data into a 7-bit thermometer
code, while using 1-bit weights. Then, the final MAC result will be the
simple sum of seven intermediate MAC results that stream out serially.
Let the non-idealities of the crossbar array and readout electronics add
noise with a power of σn

2 to each of the seven intermediate MAC results.
Then the noise of the final MAC result will be 7σn

2 given the simple sum.
To compare, if we time-expand each input data into a conventional
3-bit binary code (which has the same number of levels as the 7-bit
thermometer code), the final MAC result will again be an accumula-
tion of three intermediate MAC results, with each accompanied by the
aforementioned noise with power σn

2. But in this case, to produce the
final MAC result, the 3 individual MAC results are added with weights
22, 21 and 20. Therefore, the power of the noise accompanying the
3 individual MAC results will be added with weights (22)2, (21)2, (20)2 to
yield the total noise power of (42 + 22 + 12)σn

2 = 21σn
2 for the final MAC

result. As seen, as compared to the 3-bit conventional binary code,
the 7-bit thermometer code spends 2.33× more time but obtains 3×
less noise. Above, we have chosen 7-bit thermometer code to compare
it to the 3-bit conventional binary code. Our actual BNN algorithm
time-expands each input data into an 8-bit thermometer code, while
using 1-bit weights (as an aside, we train weights first in real-values,
and second re-train them into 1-bit values: details of this two-step BNN
training method can be found in ref. 40).

Recycling of the single MRAM crossbar array to implement the
two-layer perceptron
The perceptron has an input layer of 784 terminals, the first layer of
128 neurons, and the second layer of 10 neurons. Our crossbar array
can take 64 inputs and produce 64 outputs at a given time. Therefore,
for the input-to-first layer matrix multiplication, we need to update
the array weight 13 times to cover the 784 input terminals, and 2 more
times to cover the 128 neurons, so a total of 26 updates are required.
For the first-to-second layer matrix multiplication, the array needs
to be updated only 2 times to cover for the 128 inputs, while only 10
out of 64 outputs are used. Since our BNN algorithm time-expands
a real-valued input into 8-bit thermometer codes, the crossbar array
with a given set of weights is used 8 times. Therefore, for the clas-
sification of 10,000 MNIST images, which we repeat 3 times, the
total number of dot product operations executed by the recycled
MRAM crossbar array is 3 × (10,000 × 26 × 8 × 64 + 10,000 × 2 × 8 × 10)
≈ 404 million.

Emulator
By applying a broad variety of IN and W vectors to the crossbar array,
which produce many different RH–RL distributions for each column,
we amass 4,160,000 dot products digitally converted by TDCs and
their errors. Nonetheless, since the number of ways RH and RL can
be distributed along a column is enormous (>1038), RH–RL column
distributions that occur during the image classification emulation
will only be found in our measurement dataset with low probability.
Given this, we sort our 4,160,000 error data (which are digital-offset
calibrated) into 4,160 different groups based on two indices: the
column index, NC = 1, 2, …, 64, and another number index, N∆ = −32,
−31, …, 32, 32, defined as the difference between the number of RH
values in the column top half and that in the column bottom half
(these 4,160 data groups are not equally populated, with the N∆ = 0
group being most populated). In each data group, we organize its

errors into a histogram, with examples shown in Extended Data Fig. 7
for the NC = 1 and N∆ = −16 group and for the NC = 1 and N∆ = 16 group.
In the image classification emulation, for each dot product between
an IN vector and a W vector, we find the data group it belongs to
according to NC and N∆, and add to the software dot product an
error probabilistically chosen from this data group according to
its error histogram. The key idea of this emulation lies in that the
error data groups defined by NC and N∆ exhibit reasonably distinct
error characteristics. For example, the two data groups of Extended
Data Fig. 7 have error distributions biased in opposite directions.
The emulator also models in skews observed in the measurements.
Since this is a model, its validity is to be tested by comparing its
result to the hardware result: when we apply this emulator to the
two-layer perceptron of the main text, we obtain a 93.18 ± 0.09%
accuracy (repeated three times), which is within 0.2% of the hardware
result of 93.23 ± 0.05%.

MRAM crossbar array size limitation due to the TDC readout
scheme
In addition to the analogue noise that limits the array size, the TDC
readout scheme may also limit the array size. If N of the N × N cross-
bar array scales linearly along with the lumped capacitor, the delay
time constant, the number of operations and the array area all scale
quadratically. If VREF is set at the delay time constant, the operating
frequency scales inverse quadratically. The power consumption of the
crossbar array associated with the capacitor charging then remains
constant. Therefore, the throughput and TOPS W–1 remain the same,
while TOPS mm–2 scales inverse quadratically. In reality, the scaling
consideration is more complex: for example, the frequency does not
have to change so markedly as we can adjust VREF, and the area is deter-
mined by not just the crossbar array but also the peripheral electronics.

Data availability
The data that support the findings of this study are available from the
corresponding authors upon reasonable request.

Code availability
Computer codes are available from the corresponding authors on
reasonable request.

40. Wang, P. et al. Two-step quantization for low-bit neural networks. In 2018 IEEE Conference
on Computer Vision and Pattern Recognition 4376−4384 (IEEE, 2018).

Acknowledgements We thank G. Jin (Corporate President of Samsung Electronics), S. Hwang
(CEO of Samsung SDS), E. Shim (Corporate EVP of Samsung Electronics) and G. Jeong
(Corporate EVP of Samsung Electronics) for technical discussions and support.

Author contributions S.J., G.-H.K., Y.S., D.H. and S.J.K. devised this work. S.J., H.L., S.M. and Y.J.
designed the analogue circuits, and S.-W.K. and M.K. designed the digital circuits for the CMOS
chips. S.H., B.K., B.S., Kilho Lee, Kangho Lee, G.-H.K. and Y.S. characterized the MTJs and optimized
the fabrication steps for the MRAM crossbar array. S.J. and Y.J. developed evaluation boards. S.J.,
H.L., S.M. and W.Y. evaluated the MRAM crossbar array. H.K. and C.C. designed and trained the
two-layer, eight-layer and ten-layer neural networks. S.J., S.K.Y. and W.Y. performed the MNIST
classification experiments. S.J., S.K.Y., S.J.K. and D.H. analysed dot product errors. S.K.Y. and H.K.
developed the emulator. S.-W.K. and M.K. developed the face detection system and performed
the face detection experiments. S.J., H.L., S.K.Y., S.J.K. and D.H. wrote the paper. G.-H.K., Y.S., C.C.,
D.H. and S.J.K. supervised this work. All authors read and discussed the manuscript.

Competing interests The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at
https://doi.org/10.1038/s41586-021-04196-6.
Correspondence and requests for materials should be addressed to Donhee Ham or Sang
Joon Kim.
Peer review information Nature thanks the anonymous reviewer(s) for their contribution to the
peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://doi.org/10.1038/s41586-021-04196-6
http://www.nature.com/reprints

Article

Extended Data Fig. 1 | Conventional memory crossbar array for ANN computing. a, Conventional memory crossbar array to perform analogue vector–matrix
multiplication. b, Vector–matrix multiplication is prevalent in ANN computing: it is used to transfer data from a layer to the next.

Extended Data Fig. 2 | MTJ write/read operation. a, For each column, two write/read data lines were added with access switches. b, Example of write operation.
c, Example of read operation.

Article

Extended Data Fig. 3 | Estimated R from data-dependent delay and associated error. Estimated R = τ/C calculated from equations (3) and (5) versus true
R calculated from equation (4) for a broad variety of IN vectors, with W = RH for the entire column.

Extended Data Fig. 4 | Error distribution after digital offsets. Error distribution modified from Fig. 2d after applying digital offsets to select columns.

Article

Extended Data Fig. 5 | Performance with varying conditions. a, Measured
power efficiency and mean absolute error of the dot products as a function of
the supply voltage of the TDC readout electronics for an 11.1 MHz operating
frequency. b, Measured power efficiency and mean absolute error of the dot
products as a function of the operating frequency for a 1.0 V supply voltage for

the TDC readout electronics. For both a and b, each mean absolute error is
obtained from 1,600 dot products as in Option 1 in Extended Data Table 1,
except for the mean absolute error in the case of the 1.0 V TDC readout supply
and the 11.1 MHz operating frequency, for which the error is calculated from ~4
million dot products (this Option 2 in Extended Data Table 1).

Extended Data Fig. 6 | Measurement set-up. a, Evaluation board containing voltage regulators, clock generators, an MCU and the MRAM crossbar array chip.
b, The MCU communicates with the PC via USB.

Article

Extended Data Fig. 7 | Distribution of dot product errors. a, NC = 1 and N∆ = −16 data group. b, NC = 1 and N∆ = 16 data group.

Extended Data Table 1 | Measured performance summary

