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Though the no-cloning theorem [Wooters and Zurek, Nature (London) 299, 802 (1982)] prohibits exact
replication of arbitrary quantum states, there are many instances in quantum information processing and
entanglement measurement in which a weaker form of cloning may be useful. Here, I provide a construction for
generating an “entangled clone” for a particular but rather expansive and rich class of states. Given a stabilizer
code or free fermion Hamiltonian, this construction generates an exact entangled clone of the original ground
state, in the sense that the entanglement between the original and the exact copy can be tuned to be arbitrarily
small but finite, or large, and the relation between the original and the copy can also be modified to some
extent. For example, this Rapid Communication focuses on generating time-reversed copies of stabilizer codes
and particle-hole transformed ground states of free fermion systems, although untransformed clones can also
be generated. The protocol leverages entanglement to simulate a transformed copy of the Hamiltonian without
having to physically implement it and can potentially be realized in superconducting qubits or ultracold atomic
systems.
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I. INTRODUCTION

Entanglement both poses problems and offers solutions for
quantum information processing. On one hand, entanglement
between a system and its environment leads to decoherence and
makes the notion of quantum memory challenging in practice.
On the other hand, entanglement features prominently in the
solution of quantum error correction [1,2], in which infor-
mation is stored in logical bits which are entangled states of
multiple physical qubits. Such fault-tolerant stabilizer codes,
in particular, surface codes [3], have progressed significantly
in both theory [4] and implementation [5].

Can entanglement be used to address other fundamental
obstacles such as the no-cloning theorem [6], which forbids
the replication of arbitrary quantum states? Having multiple
(approximate) copies of a quantum state would be useful
for many purposes. For example, schemes for measuring the
nth Renyi entanglement entropy in quantum states, which
have been recently proposed [7,8] and realized [9], require
beginning with several (n) copies of the state. Likewise,
multiple copies of a state are directly useful for quantum
state estimation and may serve other quantum information
processing roles.

The focus of this Rapid Communication is states which
are the ground states of a Hamiltonian. One trivial means of
“cloning” is to replicate the Hamiltonian and thus the ground
state, but in practice it may be challenging to duplicate the full
Hamiltonian for the second copy, especially if the Hamiltonian
is very complex. To avoid doing so, I will make use of
entanglement for this objective. While most “entanglement-
assisted” protocols for other purposes utilize maximally
entangled states such as Bell pairs, I will utilize “maximally
entangling Hamiltonians” which have a maximally entangled
state as its ground state. Such Hamiltonians are very common,
as will be evident, and may be much simpler to implement than
the full Hamiltonian whose ground state is to be replicated.

*thsieh@kitp.ucsb.edu

In this Rapid Communication, I provide a construction
for generating an “entangled clone” of any stabilizer code
or free fermion Hamiltonian, without having to physically
replicate the original Hamiltonian. More precisely, given a
stabilizer code, the output of this construction is the exact
time-reversed copy of the original system, whose entanglement
with the original system can be tuned to be arbitrarily small but
finite, or large. Similarly, given a free fermion Hamiltonian,
the construction generates the exact particle-hole transformed
copy of the original system, again tunably entangled with
the original copy. The construction can be modified so that
time reversal and particle hole can be generalized to many
other kinds of transformations, including no transformation
(identical clones). In the following, I detail the setup for this
construction and state and justify the main claim of cloning
[see Eqs. (8) and (9) and Fig. 1]. I conclude by discussing how
this analysis applies to a wide range of systems and provides
an entanglement perspective on the bulk topological proximity
effect introduced in Ref. [10].

II. SETUP AND DEFINITION

Consider two identical Hilbert spaces: A, the parent system
to be cloned, and B, an auxiliary system to realize the clone.
Let HA be a Hamiltonian for the A system and let HAB describe
coupling between A and B such that it has a unique ground
state |ψ〉 which is maximally entangled between A and B (see
Fig. 1, left).

The cloning results and proofs require the following
definition: Given a state |ψ〉 which has maximal entanglement
between two systems A and B and given an operator OA with
support on A, the dual operator OB relative to |ψ〉 is defined
as the operator which satisfies

OA|ψ〉 = OB |ψ〉. (1)

Why is OB guaranteed to exist? Due to maximal entanglement,
ρA(B) = trB(A)|ψ〉〈ψ | is proportional to the identity matrix,
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FIG. 1. Left: The Hamiltonian is H1 ≡ HA + gHAB , where HA is

a stabilizer code (blue system) and HAB is antiferromagnetic (AFM)
exchange coupling between corresponding qubits of A and B (dashed
lines). Right: The Hamiltonian is H1 ≡ HA + HB + 2gHAB , in which
HB is the time-reversed HA acting on the B qubits and the coupling is
twice as large. The main claim is that both Hamiltonians have exactly
the same ground state for all g > 0. This allows one to generate an
entangled clone of the original ground state of HA without having
to replicate the Hamiltonian. A completely identical clone can be
produced with ferromagnetic exchange [see (16)].

which implies that

|ψ〉 = 1√
N

∑

α

|α〉|α̃〉, (2)

where N is the size of the Hilbert space, {|α〉} is a complete,
orthogonal basis for A, and {|α̃〉} are corresponding states in
B. Then, given OA, OB is defined by the conditions

〈α̃|OB |α̃′〉 = 〈α′|OA|α〉 ∀α,α′. (3)

One can easily check that these conditions ensure that (1) is
satisfied. Such dual operators relative to maximally entangled
states are a special case of “mirror operators” introduced
[11] in the black hole/holography context. They allow one to
reexpress the action of an operator on one side of a maximally
entangled state as the action of an operator acting on the other
side.

III. CLONING STABILIZER CODES

In this section, let A,B be two identical sets of N qubits
and HA be a stabilizer code,

HA = ∑
i HA,i, (4)

[HA,i,HA,j ] = 0, (5)

where each operator HA,i is a string of Pauli operators σA
i,α

acting on different sites i (α = x,y,z). Notable examples
include the cluster state [12] and toric code [13] Hamiltonians,
both of which figure prominently in quantum information
processing proposals. Moreover, I will consider the physically
relevant exchange coupling

HAB =
N∑

i=1

σA
i,xσ

B
i,x + σA

i,zσ
B
i,z. (6)

Making the exchange isotropic by adding σA
i,yσ

B
i,y will not alter

the following conclusions. Note that both the anisotropic and
isotropic couplings have the same maximally entangled ground
state |ψ〉, which is a product state of spin singlets formed from
corresponding A,B sites. In this case, the dual operator of HA,

relative to |ψ〉 is

HB = HA(σA → −σB). (7)

This is because σA
i,α|ψ〉 = −σB

i,α|ψ〉.
The main result is that the composite ground state |ψ1〉 of

H1 ≡ HA + gHAB, (8)

for any coupling constant g > 0, is exactly the same as the
composite ground state |ψ2〉 of

H2 ≡ HA + HB + 2gHAB. (9)

This construction thus allows one to simulate HB , a time-
reversed HA, without physically implementing it.

To establish the result, I start from the strong coupling limit,
in which both Hamiltonians H1,H2 have the same ground state
|ψ〉, and expand away from this limit to all orders. By using the
dual operator property of maximally entangled states, I will
redistribute the action of HA onto both A and B and show that
at every order, the ground states of H1 and H2 are identical.
The ground state of εHA + HAB is given by

|ψ1〉 = |ψ〉 + εG0P⊥HA|ψ〉 + ε2(G0P⊥HA)2|ψ〉 + O(ε3),

where P⊥ ≡ 1 − |ψ〉〈ψ | and G0 ≡ (E0 − HAB)−1.
As a warmup, consider the O(ε) term. Owing to the dual

operator property, which allows one to trade the action HA|ψ〉
for HB |ψ〉, we can equivalently write the term as

(ε/2)G0P⊥(HA + HB)|ψ〉. (10)

In fact, I will show that at any order n,

(εG0P⊥HA)n|ψ〉 = [(ε/2)G0P⊥(HA + HB)]n|ψ〉. (11)

Expanding HA into its constituent operators transforms the
left-hand side into

εn
∑

i1,...,in

in∏

j=i1

(G0P⊥HA,j )|ψ〉. (12)

Moreover, by inspection, one can check that σA
i,α |ψ〉, for any

α = x,y,z, is also an eigenstate of HAB . Hence, in the above
expression, every G0P⊥ always acts on an eigenstate of HAB

and thus reduces from an operator into a number, possibly zero.
As all {HA,j } commute with each other by assumption, each
instance of HA,j can thus be commuted all the way to the right
to act directly on |ψ〉, upon which it can be rewritten as (HA,j +
HB,j )/2, where HB,j is the dual operator of HA,j relative to
|ψ〉. The new operator (HA,j + HB,j )/2 can then be commuted
back to the original position of HA,j . This establishes the
equivalence (11) of the order n terms in the expansions of
εHA + HAB and (ε/2)(HA + HB) + HAB .

One can also expand from the weak coupling side. In
finding the ground state of H1 = HA + gHAB , the degeneracy
of B is first lifted by an effective Hamiltonian HB that is
the time-reversed version of HA; this is a consequence of (1)
the integrable structure of HA, (2) the fact that the nth order
of degenerate perturbation theory carries a sign (−1)n+1, and
(3) HAB is antiferromagnetic (the coupling is positive). Hence,
at zeroth order in g, the ground state is identical to that of
H2 = HA + HB + 2gHAB . At higher orders, the perturbative
expansions again match exactly because any action of HAB

flips the same integrals of motion in A and B (twice the energy
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cost is incurred in H2 due to HB , thus requiring twice the
coupling to match with H1).

All perturbative expansions converge for a parameter range
at least O(1/N ) in size, given a gap of HA of O(1). However,
given the equivalence at all orders in the expansion from both
the weak and strong coupling limits, as well as support from
numerical studies [14] in the intermediate coupling regime,
it is very suggestive that the ground states of H1 and H2 are
equivalent for all g, not just the naive regime of convergence.

IV. CLONING FREE FERMIONS

A similar result and proof holds for free fermion systems.
In this case, let A and B each be a set of N fermions which
can occupy half of 2N orbitals labeled σ . Let HA be a
noninteracting Hamiltonian which can be diagonalized into
the form

HA =
∑

α

εαc
†
A,αcA,α, (13)

where α (εα) label eigenmodes (energies) of HA. In contrast
to the exchange coupling chosen in the previous section, the
coupling between A and B for fermions is chosen to be
tunneling,

HAB = −
∑

σ

c
†
A,σ cB,σ + H.c. = −

∑

α

c
†
A,αcB,α + H.c.,

which has a maximally entangled ground state,

|ψ〉 =
∏

α

(c†A,α + c
†
B,α)|0〉. (14)

In this case, the dual operator of HA, relative to |ψ〉, is

HB = HA(c†AcA → −c
†
BcB) + const. (15)

This is because c
†
A,αcA,α|ψ〉 = cB,αc

†
B,α|ψ〉 =

(1 − c
†
B,αcB,α)|ψ〉.

Once again, the assertion is that H1 = HA + gHAB and
H2 = HA + HB + 2gHAB have identical ground states. The
argument is very similar to the one above, with a small differ-
ence: In this case, all intermediate eigenstates in the expansion
(12) involve either (c†A,α + c

†
B,α)|0〉 or (c†A,α − c

†
B,α)|0〉. Both

states are maximally entangled and, importantly, have the same
dual operator correspondence. Hence, every operator HA,j

in the expansion directly acts on either of the intermediate
eigenstates and can be transmuted in both cases into (HA,j +
HB,j )/2. This establishes the claim.

V. APPLICATIONS AND VARIANTS

The two main results apply to stabilizer codes and free
fermions, which encompass a wide range of states, including
symmetry protected topological states (e.g., cluster states [12],
topological insulators [15]), topologically ordered states (e.g.,
toric code [13], doubled semion model [16]), and exotic states
such as the Haah code [17,18]. All such states can be cloned
in the entangled fashion above.

Moreover, fermionic stabilizer codes are also amenable
to entangled cloning. For example, recently studied models
[19,20] involve lattices of Majorana modes γ A

j , whose Hamil-
tonian involves products of Majorana modes which mutually

commute. One can entangle clone such states by introducing an
identical Hilbert space B of Majorana modes γ B

j and coupling
the subsystems with the Hamiltonian HAB = ∑

j iγ A
j γ B

j . This
coupling has a ground state |ψ〉 which is maximally entangled
with respect to the Majorana modes and operators can be
dualized accordingly: γ A

j |ψ〉 = iγ B
j |ψ〉.

The choice of couplings (exchange for spin, tunneling
for fermions) dictates how the cloned system relates to the
original system, and these aspects can be tailored in many
different ways. For example, while the exchange coupling
considered gives rise to a time-reversed copy of A for system
B, an alternative coupling σA

x σB
x − σA

z σB
z has the ground state

|ψ〉 = |σA
z = 1〉|σB

z = 1〉 − |σA
z = −1〉|σB

z = −1〉 which ad-
mits a different duality σA

x |ψ〉 = −σB
x |ψ〉, σA

y |ψ〉 = σB
y |ψ〉,

σA
z |ψ〉 = σB

z |ψ〉. In this sense, the coupling can be modified
to produce different entangled clones.

In particular, the ferromagnetic coupling

HAB = −
N∑

i=1

σA
i,xσ

B
i,x + σA

i,yσ
B
i,y + σA

i,zσ
B
i,z (16)

can be used to produce untransformed clones (HB will be
identical to HA in this case). Similarly, in the free fermion
case, pairing between A and B,

HAB =
∑

σ

c
†
A,σ c

†
B,σ + H.c., (17)

can be used to generate completely identical clones.
Moreover, depending on the coupling, the result may

generalize beyond stabilizer codes. For example, if A and B are
two qubits coupled with isotropic Heisenberg exchange, then
the main result applies for all single qubit Hamiltonians HA

even though they may not be stabilizer codes. This is because
the rotational symmetry can be leveraged to rotate HA to σz,
for which the stabilizer result applies.

Finally, the arguments above can be readily generalized
to justify equalities between the ground state of H1 and the
ground state of a continuous family of Hamiltonians,

Hα = (1 − αg)HA + αgHB + gHAB, (18)

where 0 < αg < 1 (the original case discussed is αg = 1/2).
Thus, there is an entire family of Hamiltonians with the same
ground state of H1 for arbitrary finite g.

VI. BULK TOPOLOGICAL PROXIMITY EFFECT

This cloning construction provides a different entanglement
perspective of the bulk topological proximity effect introduced
in Ref. [10], which I will now briefly review and revisit. The
setup considered in the prior work was also H1 = HA + gHAB ,
where HA was assumed to be a topologically nontrivial system
with gap �A above the ground state, and the authors were
primarily interested in the regime g 
 �A. It was established
that, when HA is a free fermion system with a topologically
nontrivial ground state and HAB is tunneling between corre-
sponding degrees of freedom, the “inverse” topological phase
is induced in system B for arbitrarily small or large coupling g;
more precisely, the entire system is topologically trivial even
for arbitrarily small g. Entangled cloning provides insight into
this phenomenon; it exactly maps the ground state of H1 to
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the ground state of H2 = HA + HB + 2gHAB , upon which
it is evident that system B is already in the dual (in this case
inverse) phase HB = HA(c†AcA → −c

†
BcB) even for arbitrarily

small g.
The entangled cloning perspective is even more valuable

for understanding the proximity effect of stabilizer codes.
The prior work [10] perturbatively analyzed the proximity
effect of the toric code state for weak coupling g. Unlike
the free fermion topological phases, toric code hosts intrinsic
topological order and, when weakly coupled to an identical
auxiliary system, generates another copy of itself. Instead of
being trivial, the composite system is doubly nontrivial. This
was concluded via perturbation theory from the weak cou-
pling limit. The entangled cloning provides a complementary
analysis from the infinite coupling limit, concluding that the
dual Hamiltonian HB is effectively simulated due to coupling
alone. In the case of toric code, all operators involve an even
number of spins and thus the time-reversed Hamiltonian HB

is identical to the original copy HA.
Finally, entangled cloning extends the proximity framework

to gapless phases of HA; unlike the original analysis, there is
no need to assume a gap �A.

VII. SUMMARY AND DISCUSSION

I have provided a protocol which takes as an input a
stabilizer code or free fermion Hamiltonian and outputs an
exact entangled clone of the original ground state, whose
entanglement with the original copy can be tuned. In the
specific examples illustrated above, the entangled clone is a
time-reversed and particle-hole transformed copy of the orig-
inal, but these particular transformations can be generalized
using different maximally entangling couplings or avoided by
using ferromagnetic/pairing coupling. In addition to possible
applications in quantum information processing/state tomog-
raphy and measuring entanglement entropy, this construction
provides a route to realizing new phases via coupling alone—
the simplest example being two copies of toric code from a
single copy. In particular, the realization of two toric codes
coupled with ferromagnetic exchange may host interesting
phases, even in the strong coupling limit.

Note that while free fermions and stabilizer codes are
exactly solvable, adding the exchange coupling spoils the exact
solvability of stabilizers. Nonetheless, it is a pleasant surprise

that the enlarged model still admits an exact duality at the
ground state level to a related model, for a continuous range
of couplings, owing to the structure of maximally entangled
states. Moreover, the cloned stabilizer system constitutes a
subsystem code (in which not all operators in the Hamiltonian
commute and yet logical and stabilizer operators can still be
defined), which may offer advantages in error correction [21].
While this work provides exact results for cloning stabilizer
codes and free fermions, it would be useful to generalize
to nonintegrable Hamiltonians for system A, for which the
exact mapping between ground states would likely relax to a
mapping between phases; in other words, one still expects this
construction to effectively clone the phase of HA.

Other interesting extensions from the ideal cases presented
involve couplings which are entangled but not maximally
entangled; these may still enable operator dualities but only
for a subset of operators depending on the particular entangled
state. Such weaker couplings may admit cloning for a more
restricted class of Hamiltonians. Note, however, that maximal
entanglement is sufficient but not necessary to have duality for
all operators; for example, the thermofield double state [22]
|ψ〉 ∝ ∑

α e−βEα/2|α〉|α̃〉 also allows dual operators OB to be
defined via 〈α̃|OB |α̃′〉 = eβ(Eα′ −Eα )/2〈α′|OA|α〉. See Ref. [11]
for many more details on such operator correspondences.

Superconducting qubits and ultracold atoms are two venues
in which entangled clones of stabilizer codes and free fermions
may be realized. Hamiltonians involving both spins [23]
and fermions [24] have been successfully realized using
superconducting qubits, and much potential remains (see,
e.g., Refs. [25,26]). Similarly, optical lattices feature highly
tunable couplings and have shown significant progress toward
realizing topological phases of fermions [27] and stabilizer
codes [28]; these are prime candidates for entangle cloning free
fermion states, which may in turn facilitate the measurement
of their entanglement entropies.
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