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ABSTRACT: Discoveries in quantum materials, which are characterized by the strongly
quantum-mechanical nature of electrons and atoms, have revealed exotic properties that
arise from correlations. It is the promise of quantum materials for quantum information
science superimposed with the potential of new computational quantum algorithms to
discover new quantum materials that inspires this Review. We anticipate that quantum
materials to be discovered and developed in the next years will transform the areas of
quantum information processing including communication, storage, and computing.
Simultaneously, efforts toward developing new quantum algorithmic approaches for
quantum simulation and advanced calculation methods for many-body quantum systems
enable major advances toward functional quantum materials and their deployment. The
advent of quantum computing brings new possibilities for eliminating the exponential
complexity that has stymied simulation of correlated quantum systems on high-performance
classical computers. Here, we review new algorithms and computational approaches to
predict and understand the behavior of correlated quantum matter. The strongly
interdisciplinary nature of the topics covered necessitates a common language to integrate ideas from these fields. We aim to
provide this common language while weaving together fields across electronic structure theory, quantum electrodynamics, algorithm
design, and open quantum systems. Our Review is timely in presenting the state-of-the-art in the field toward algorithms with
nonexponential complexity for correlated quantum matter with applications in grand-challenge problems. Looking to the future, at
the intersection of quantum information science and algorithms for correlated quantum matter, we envision seminal advances in
predicting many-body quantum states and describing excitonic quantum matter and large-scale entangled states, a better
understanding of high-temperature superconductivity, and quantifying open quantum system dynamics.
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1. INTRODUCTION

Accurate and efficient prediction of molecules and materials is
one of the most important outstanding problems in science and
engineering. Discoveries in quantum materials, which are
characterized by the strongly quantum-mechanical nature of
electrons and atoms, have revealed exotic properties that arise
from correlations, including unconventional superconductors,
topological insulators, spin liquids, and new phases of matter
induced via strong light−matter interactions. These systems
exhibit remarkable effects including quantum interference,
tunneling, fluctuations, entanglement, and topological quantum
states. However, the physics of quantum materials has
conventionally been inaccessible to numerical modeling, so
many of their interesting phenomena remain poorly understood,
and technological applications are elusive. For example,
electronic structure simulations of molecules with long-range
interactions are beyond the capabilities of the best super-
computers and are extremely challenging when collective
quantum effects become important, as in strongly correlated
electron systems. Further, real quantum materials have
heterogeneity and disorder that are challenging to model.
We anticipate that quantum materials to be discovered and

developed in the near future will transform the areas of quantum
information processing, which encompasses communication,
storage, computing, sensing, and metrology. Simultaneously,
efforts toward developing new quantum algorithmic approaches
for quantum simulation and advanced calculation methods for

many-body quantum systems will enable major advances toward
functional quantum materials and their deployment. It is the
promise of quantum materials for quantum information science
at the same time as the potential of new quantum algorithms to
discover entirely unexplored quantum matter that has inspired
this Review. Over the past few years, there has been substantial
activity in establishing the prediction of molecules as the primary
near-term application of quantum computation. There are
similarly impressive discoveries to come in quantum computa-
tion of quantum materials. Our Review is therefore timely and
presents the state-of-the-art in the field toward algorithms with
nonexponential complexity for strongly correlated quantum
systems, with applications in excitonic quantum matter and
many-body quantum states, large-scale entangled states, and
high-temperature superconductivity.
The challenge for classical approaches is the treatment of the

intrinsically quantum mechanical nature of the problem, in
particular for highly entangled or correlated states. The advent of
quantum computing raises new possibilities for eliminating the
exponential complexity that has stymied simulation of strongly
correlated quantum systems on high-performance classical
computers. Despite this promise, the current challenge for
quantum approaches is the limited size and coherence of
available quantum hardware. While the promise of quantum
computing for quantummaterials is large, the current state of the
field is best described as “noisy intermediate-scale quantum”
(NISQ). Heuristically, in this regime quantum computers are
too large to be directly simulated on classical computers but
remain too small to perform useful error correction. Utilizing
various hardware realizations such as superconducting qubits,
trapped ions, cold atoms, or photonic systems, academic groups
and commercial ventures have demonstrated various levels of
operational control and entanglement on tens of qubits. Here,
we aim to review new algorithms and computational approaches
to predict and understand the behavior of correlated quantum
matter, utilizing both quantum and classical resources.
In 2020, the field of quantum information processing is on the

cusp of a critical moment: special-purpose NISQ devices have
become capable of solving certain problems that classical
computers cannot solve, and quantum computers are poised to
show practical “quantum advantage”. This is in part due to the
breakthrough announced in 2019, showing that a quantum
device can perform calculations that are classically intractable,
benchmarked on the large supercomputer Summit.1 Researchers
at Google and NASA presented heuristic benchmarking
showing that their 54-qubit superconducting (SC) circuit
quantum computer performs certain sampling algorithms
much faster than classical computers,2 though these algorithms
have no known practical application. However, Google’s SC
quantum computer is still firmly in the regime of NISQ devices,
as its components are so noisy that the chances of completing a
task vanish exponentially with task size. That this “quantum
advantage” achievement would be first realized by a SC
architecture is not surprising, as staggering progress in recent
decades has enabled high-fidelity and high-speed qubit
initialization and logic gates. This result is an important step
toward incorporating quantum information as a general purpose
tool for scientific problems. Researchers at Google proceeded a
step further and utilized their superconducting processor to
determine molecular energies using experimentally imple-
mented Hartree−Fock theory,3−5 illuminating the pathway
toward practical quantum advantage for molecular and material
problems.
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In parallel, over the past few years, the ability to connect
quantum information processors by quantum communication
channels, toward a future “quantum internet”, has enabled a
wide variety of multiparty computation and decision making
protocols that go beyond classical secure communication. In
2020, we saw the first demonstration of a quantum repeater, an
important step toward enabling large-scale quantum networks.
This would allow secure communication of information over
long distances using matter and photonic based quantum
information systems.6 Quantum technologies for precision
measurement already form the basis for the world’s most
accurate clocks and sensors. We expect that the next generation
of sensing technologies will use large-scale quantum coherence
and entanglement to increase accuracy and precision by many
orders of magnitude. There is inherent synergy between a better
understanding of quantum many-body dynamics and develop-
ing new quantum information technologies. Therefore, in this
Review, we emphasize quantum materials for quantum
information science, enabling the development of physical
systems that can coherently store and manipulate quantum
states well enough for error correction.
In the NISQ-era, quantum devices with increasing complexity

are emerging rapidly. Multiple different hardware platforms have
become available recently that are intrinsically capable of
simulating quantum systems due to their quantum nature. Ideas
in quantum simulation have been realized in a wide range of
systems, including superconducting qubits, molecular qubits,
defect systems, photonic platforms, and topological systems.
With a plethora of these novel platforms, there is now an
opportunity for the realization of functional quantum resources:
quantum devices that offer practical quantum advantage in
simulations.
A significant focus of the community has been creating robust

and resilient quantum devices, many based on new materials.
Therefore, an accurate description of the electronic structure of
molecules and quantum materials is critical for predicting the

properties of these quantum devices. The electronic structure
gives rise to quantum mechanical states, which can then be
entangled and used as a “quantum resource” or more directly
lead to novel applications, such as the optimization of molecular
energy storage. The electronic structure of such systems is a
good candidate for quantum computation since the inherent
quantum nature of quantum devices provides natural benefits for
predicting quantum behavior. However, the realization of
quantum algorithms on quantum devices faces the major
challenge of susceptibility to noise, leading to sizable error
effects. These error rates are due to multiple factors: qubits can
only stay in a mixed state for a certain period of time, the qubit
operations are susceptible to accuracy errors, and subtle changes
in the environment can affect accuracy. To consider quantum
matter beyond small-scale model Hamiltonians, reducing the
error rates is essential for maximizing the reliability of the results
produced by current hardware.
This discussion shows that the description, prediction, and

optimization of these quantum devices requires the intersections
of methodologies from different fields including but not limited
to quantum electrodynamics, electronic structure theory, open
quantum systems, and algorithm design, as depicted across the
top row of Figure 1. Quantum electrodynamics focuses on the
accurate description of quantum systems under light−matter
interaction, their optical properties, and experimental realiza-
tion. Electronic structure theory, including methods such as
Hartree−Fock, density-functional, many-body perturbation and
coupled cluster theories, aims to accurately predict electronic
configurations within general molecular and material systems.
Open quantum systems focus on systems whose behavior and
dynamics are dictated by system−environment interactions,
including environmental noise. Computational algorithm design
draws ideas from classical computing and computer science
while exploiting the quantum properties of the hardware for
universal quantum computation. These fields are well-
established and have produced accurate and general methods

Figure 1. Scalable quantum systems have been the focus for many different fields including quantum optics, quantum chemistry, materials science, and
computer science. For instance, method development in quantum electrodynamics, correlated electronic structure, open quantum systems,
computational algorithms, and the interplay between these fields have provided a better understanding of quantum systems. Their progress has enabled
physical realizations of novel quantum information technologies including quantum networks, quantum computers, and quantum sensors.
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for predicting behavior in quantum systems. Combining recent
breakthroughs from these fields with ideas from computer
science to optimally design quantum algorithms has led to
physical realizations and novel application of a wide range of
quantum technologies including quantum networks, quantum
computers, and quantum sensors. Beyond the field of quantum
information, these platforms promise a new perspective on some
of the longstanding problems in chemistry such as improve-
ments in the design of molecules for catalysis, photosynthetic
light-harvesting, and energy storage.

1.1. Layout and Sections

In this Review, part of a Thematic Issue on Quantum Materials,
we provide a fresh look at classical and quantum algorithms to
approach novel quantum systems. With increased under-
standing and remarkable experimental imaging of quantum
behavior of molecules andmaterials, these systems are becoming
technologically relevant. Researchers have made tremendous
progress toward the accurate treatment of the electronic
structure of quantum mechanical systems, tailoring and
controlling correlations, thereby allowing the design of novel
molecules and materials.7−11 In section 2, we discuss classical
methods in electronic structure theory that use the wave
function as the primary variable of interest to accurately treat
quantum systems where electronic correlation is critical. In
section 2.1, we discuss the definition and importance of
electronic correlation in molecules and materials. In section
2.2, we discuss classical electronic structure theory methods
including Hartree−Fock, configuration interaction, and coupled
cluster theories. We then highlight molecular qubit candidates as
both an independent and exciting active field of experimental
research and as a potential application of these classical methods.
An alternative approach from using the wave function as the

primary variable of interest is to consider a density perspective,
which we discuss in section 3. In section 3.1, we highlight
reduced density matrix techniques, with an emphasis on the
variational method to capture correlation in molecular and
material compounds. We then discuss physically motivated
density matrix constraints that can be used as error mitigation on
quantum devices. We briefly discuss reduced density matrix
functional theory, leading into the remainder of this section,
which focuses on density functional approaches.
Density functional based methods have been extensively

developed and utilized for describing aspects of molecular and
solid-state quantum systems. Research advances have extended
DFT methods to be time-dependent and, importantly, have
allowed for direct inclusion of correlations with electrons,
phonons, and photons. There have also been method develop-
ments such as the quasiparticle GW approach, which builds
upon DFT. Altogether these methods have been timely, as
experimental work has expanded to include novel materials and
chemical systems, along with the inclusion of light-mediated and
cavity-driven interactions. Light-mediated manipulation of
quantum matter is particularly attractive, as it enables control
at fundamental time scales and access to novel nonequilibrium
states of matter. Ultrafast and quantum electrodynamical
methods have been recently used as a new tuning knob to
induce insulator-to-metal transitions, topological phases, and
ferroelectricity, as well as transient superconductivity in copper
oxides and organic crystals. While this provides a tantalizing
opportunity to explore new quantum phases, particularly in the
case of transient superconductivity, key questions remain on the

underlying excitation mechanisms and computational ap-
proaches to describe such systems.
With these as motivating factors, we discuss DFT methods in

section 3.2. In particular, we highlight in section 3.2.1 the
theoretical approaches for describing atomic point defects in
crystals. These defects, which can behave as “artificial atom”
qubits or “color center” qubits, serve also to highlight
opportunities for algorithmic advances to capture correlated
electron−nuclear dynamics in these and other quantum matter
systems. Going beyond conventional DFT, section 3.3 covers
time-dependent density functional theory and quasiparticle
methods for correlated quantum matter. In section 3.4, we
introduce algorithmic advances toward describing “driven
quantum matter”. In particular, we highlight ab initio quantum
electrodynamical methods that can model inherently correlated
quantum interactions, where photon, nuclear, and electron
degrees of freedom are treated at the same level of quantization.
We then review, in section 4, the recent progress in quantum

algorithms and how the realization of quantum devices has
allowed for an alternative pathway for reducing the scaling of the
N-body problem of interacting quantummechanical particles. In
section 4.1, we consider the inception of quantum algorithms
and early progress in their application to chemical and material
systems. In section 4.2, we discuss an important class of
quantum−classical approaches where a limited number of atoms
or orbitals are mapped on the quantum computer, while the
remaining part of the material system is treated using the
strength of classical supercomputing platforms. In section 4.3,
we present error mitigation ideas to aid in successful simulation
of large quantum systems as NISQ platforms of appropriate
qubit size and coherence times become available. The diversity
of hardware including gates, connectivity, control schemes, and
noise characteristics are both a challenge and an opportunity; as
much as one algorithmic approach may not succeed on one
platform, it might be adjusted to succeed on another, as the
community has recently shown. Validation and verification of
the quantum hardware is important as we establish a new
computational paradigm, especially with the high error rates and
initially unknown nature of errors of NISQ hardware.
In section 5, we will discuss the field of open quantum systems

and how this perspective can be used as a lens to think about
quantum systems of interest, from atoms and molecules to
quantum networks. The control of quantum systems requires
coupling diverse subsystems together while simultaneously
driving them and minimizing the detrimental effects of the
environment. The inherent contradiction in using external
classical fields for control while limiting the deleterious effect of
the environment requires a fundamental understanding of a
quantum system that is open to its environment. Modeling and
controlling quantum systems that operate with some degree of
decoherence is an interdisciplinary problem, as we will illustrate.
In the simplest case where the system is well isolated and the
coupling to the environment is weak, methods such as the
Lindblad−Kossakowski formalism can be used to capture
decoherence and loss due to the environment. While this
alone is challenging, certain regimes, such as strong system−
bath coupling, are much more complex. Strides toward defining
and distinguishing between different regimes and capturing the
resulting dynamical properties are discussed in sections 5.1 and
5.2, respectively. Further, in section 5.3, we will present advances
in the treatment of open quantum systems through a myriad of
applications from correlated materials physics to descriptions of
hybrid quantum systems.
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We acknowledge that the strongly interdisciplinary nature of
the topics covered is unprecedented and there is a need for a
common language to integrate ideas from these fields. In this
Review, we aim to provide this common language while weaving
these fields together. Taken together with the other reviews in
this Thematic Issue on Quantum Materials, including those by
Zunger et al.,12 Felser et al.,13 and Nguyen and Cava,14 we
present a comprehensive foundation for those entering the fields
of correlated quantummatter and quantum information science.
We conclude the Review in section 6 with open questions in

quantum simulations and algorithms for correlated quantum
matter. In particular, we highlight directions beyond variational
quantum eigensolvers and discuss recently developed algo-
rithms to capture correlations, entanglement, and excited states
in quantummaterials. Further, we present forward-looking ideas
in predicting and controlling driven quantum matter.

2. WAVE FUNCTION-BASED ELECTRONIC STRUCTURE
METHODS FOR QUANTUM MATTER

Ever-increasing computational power, theoretical advances, and
improvements in algorithm design have opened new frontiers in
21st century quantum chemistry and quantummaterials science.
Treating atoms, molecules, and materials using computational
methods involves solving a many-body problem of interacting
electrons and nuclei and possibly also coupled electromagnetic
fields. Due to the vast configuration space, this problem is
exponentially complex and can only be solved exactly for very
small systems. Therefore, all practical methods for real systems
rely on approximations, and balancing the computational costs
of these methods with the accuracy of the prediction is a
constant challenge. The simplest methods to treat interacting
multicomponent systems are adiabatic and semiclassical
approximations. Examples include the Born−Oppenheimer
approximation, which simplifies electron−nuclei problems, or
a semiclassical Schrödinger−Maxwell treatment, which sim-
plifies the problem of the electromagnetic field interacting with

electronic systems. In each method, the many-body problem is
reduced to a problem of interacting electrons, which are treated
as quantized, and a separate problem of nuclei or the
electromagnetic field governed by Maxwell’s equations. The
different time scales of nuclear, electronic, and photonic motion
provide justification for these approximations. When consider-
ing the electronic degrees of freedom, relatively accurate
treatment for electronic correlation is often critical for obtaining
important molecular and material properties such as those
depicted in Figure 2. In this section, we will focus on the
development of electronic structure methods and how these
theories can enable future experiments in quantummaterials and
quantum information.

2.1. Introduction to Electronic Correlation Effects

The correlation energy of a general molecular electronic system
can be given by

= −E E Ecorr exact HF (1)

where Eexact is the exact total electronic energy and EHF is the
Hartree−Fock or mean-field energy. Generally the correlation
energy is the energy associated with the interaction between
electrons beyond a single-particle picture or the part of the
electronic energy that the Hartree−Fock method fails to
capture.15 For quantum matter applications, electronic
correlation can be divided into two categories, static and
dynamic.16 Static or multireference electronic correlation arises
when the low-energy configurations are degenerate or nearly
degenerate with the reference Slater determinant, as in stretched
molecular configurations.17 In other words, a single molecular-
orbital diagram is insufficient to describe the wave function and
more determinants must be included.18 Dynamic correlation
arises from the repulsion due to the relative motion of electrons
and often requires the need to mix higher-order excited
configurations with the reference Slater determinant.16 As an
example of these energies, the total energy, Hartree−Fock

Figure 2. Electronic structure methods are a computational backbone for building quantummatter. From atoms to bulk material, correlated electronic
structure methods are used to investigate properties including orbital densities, potential-energy surfaces, level diagrams and optical transitions, band
structures, and phase diagrams.
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energy, and correlation energy of hydrogen fluoride at varying
bond distances are shown in Figure 3.

There are several popular methods of approximating the
correlation energy, including Møller−Plesset perturbation
theory (MPT), configuration interaction (CI) theory, and
coupled cluster (CC) theory. When using any approximate or
perturbative method, there are a few important properties to
preserve while considering the electronic structure of a system,
including size consistency and size extensivity. Size consistency
refers to the energy of a molecular system being equivalent to the
sum of its individual parts at infinite separation, whereas size
extensivity refers to the energy scaling with the system size.21

Due to the physical nature of size consistency and size
extensivity, methods that satisfy these properties are generally
preferable. Accurate calculation of strong electronic correlation
in molecular and extended material systems is critical for a
variety of applications. Predicting and controlling the electronic
entanglement is essential to designing large molecular systems
for use as qubits or to store information or energy.22−32

Traditional formulation of the electronic correlation problem
leads to exponential scaling in system size; however, current
progress in the field is producing novel methods for treating
electron correlation with improved scaling.
In section 2.2, we will discuss the traditional quantum

chemistry methods as relevant to predictions of correlated
quantum matter. In section 3, we will then discuss other routes
such as density functional and time-dependent density func-
tional theory and its extensions, quasi-particle and reduced
density matrix based methods, and other recent techniques
including machine learning-based approaches in computational
condensed matter physics.
2.2. Quantum Chemistry Approaches to Correlated
Quantum Matter

The simplest approximation to intuitively consider electronic
behavior is to ignore explicit treatment of electron−electron
correlation and instead consider the energy and configuration of
a single electron in the average field of other electrons. This class
of approaches is referred to as mean-field methods and the
Hartree−Fock method is the most commonly used in quantum
chemistry. In the Hartree−Fock method, the solution of the

interacting many-body problem of N electrons is approximated
by a single Slater determinant,

χ χ χ|Ψ ⟩ = | ⟩... N0 1 2 (2)

where χi are single-particle wave functions. The variational
principle can be used to determine the optimal wave function
|Ψ0⟩ that leads to the lowest energy, E0:

= ⟨Ψ | ̂ |Ψ ⟩E H0 0 0 (3)

where Ĥ denotes the Hamiltonian of the system.33

The Hartree−Fock approximation leads to a set of single-
particle equations, known as the Hartree−Fock eigenvalue
problem. The ground state is composed out of the N lowest
occupied orbitals, while the other orbitals are unoccupied or
virtual orbitals. By choosing a single Slater determinant and
therefore only considering occupied orbitals and by ignoring the
correlated nature of electron−electron interactions, Hartree−
Fock scales as Norb

3, where Norb is the basis set size, while
capturing 99% of the electronic energy for a wide range of atoms,
molecules, and materials.33 As a mean-field approximation, the
Hartree−Fockmethod fails to capture the electronic structure of
strongly correlated systems. This critical failure has led to the
development of many methods to include electronic correlation,
commonly referred to as post-Hartree−Fock methods.
A standard approach for improving upon the Hartree−Fock

method is by including an increasing number of Slater
determinants, consequently increasing the size of the Hilbert
space. Many of these extensions use active spaces as a method of
decreasing the space of chemical interest and therefore
decreasing the computational cost, allowing for the treatment
of larger quantum systems. Using an active space involves
selecting a subset of orbitals to be treated with a high level of
theory, while the remainder of the orbitals are treated at a mean
field level of theory.34 Generally the valence orbitals near the
HOMO−LUMO gap are selected as the active space, while the
lower energy occupied orbitals (core orbitals) and the high
energy unoccupied orbitals (virtual orbitals) are treated at a
lower level of theory. Active spaces are incorporated into many
of the post-Hartree−Fock methods discussed below.
An important class of post-Hartree−Fock methods is the

multiconfigurational self-consistent field (MC-SCF) meth-
ods.35−37 In MC-SCF, the wave function is written as a linear
combination of Slater determinants with coefficients that are
determined variationally through minimizing the energy of the
MC-SCF wave function. MC-SCF methods have been used to
accurately treat static correlation in a variety of molecular
systems, including transition metal and actinide chemistry.38−40

An important subset of MC-SCF methods are the complete
active space self-consistent field (CASSCF) methods. These
involve generating a full configuration interaction wave function
within the active space and then variationally optimizing the
orbitals and configuration coefficients.34 A more recently
developed subset of MC-SCF methods is the generalized active
space (GAS) method where multiple active spaces are chosen
and controlled such that insignificant configurations are
neglected.41−43 Restricted active space (RAS) and localized
active space (LAS) methods are other directions that have been
explored,44,45 the latter being introduced recently to improve the
use of active space methods in the density matrix embedding
framework.46,47

There are a variety of perturbative techniques for adding
electronic correlation to the Hartree−Fock energy in molecular

Figure 3.Hartree−Fock (teal) and full-configuration interaction (gray)
energies versus atomic distance r for the dissociation of hydrogen
fluoride in the STO-6G basis set19 calculated using PySCF.20 The
separation dependent correlation energy is shown as Ecorr(r) as the
difference between EHF and EFCI.
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systems. Møller−Plesset perturbation theory is a systematic way
of adding correlation energy to the total electronic energy of a
system.48 This method is generally used to second order in
correlation potential, denoted as MP2, and while this method
originated in the 1930s, much progress has been made since
then, which has allowed it to become a popular method for
capturing electronic correlation.49 Methods such as the
resolution of identity (RI) or density fitting,50−55 Cholesky
decomposition,56−60 local correlation,61,62 and combinations
therein have reduced the complexity of the MP2 method and
introduced efficient computational schemes allowing for its use
to treat molecular systems with hundreds of atoms.63 The
advantages of MP2 include polynomial scaling, from N( )orb

5

down to N( )orb with the correct approximations,64−69 size-
consistency, and the ability to capture dynamic correlation.
However, the treatment of electronic correlation is incomplete
and therefore inaccuracies arise when treating systems that
include stacking or hydrogen bonding.70−72 Many method
extensions based on MP2 have been developed to overcome
such drawbacks, notably spin component scaledMP2, which has
been shown to improve the ground-state energies in non-
covalent interactions,73−78 orbital-optimized MP2,79−82 spin-
network-scaledMP2, which relies on the inclusion of neural nets
to weight interaction energy terms,83 the use of natural orbital
functionals to include static correlation,84 and many more.85−87

Other perturbative techniques include the complete active space
perturbative approach to second order (CASPT2)88,89 and the
restricted active space perturbative approach to second order
(RASPT2).90 Both of these perturbative methods improve the
CASSCF energy by including dynamical correlation through the
use of perturbation theory. These methods have been successful
in the description of excited states,91 dissociation energies,92 and
magnetic properties.93 A specific example of the use of CASSCF
and CASPT2 was for the investigation of the spin density on the
metal centers of a variety of molecular qubit candidates.31

Alongside experimental investigation, the ability to theoretically
investigate molecular properties of these novel qubit candidates
allows for improved design and efficiency.
Another possible avenue for including electronic correlation is

through using the configuration interaction method. In the full
configuration interaction (FCI) method, all determinants
contribute to the wave function, and in the limit of an infinite
basis set, the exact energies could be calculated.33 The wave
function can be written as

|Ψ⟩ = + ̂ |Ψ ⟩I T( ) 0 (4)

with

∑̂ = ̂T T
i

i
(5)

where T̂i is the operator that creates all particle excitations of
order i and |Ψ0⟩ denotes a reference state, which is commonly
the Hartree−Fock wave function. The prominent drawback of
this method is that the scaling is exponential in terms of system
size. Due to the exponential scaling, even with small basis sets
the FCI method can only capture the electronic configuration
for cases in which no more than around 18 orbitals are
necessary.33 Although the scaling of this method is computa-
tionally unfavorable, multiple flavors of configuration inter-
action have been explored. The simplest approximation is to
truncate the level of excitations, starting with including all
determinants that represent a single excitation (CIS), then single

and double excitations (CISD), then single, double, and triple
(CISDT), and so on until the desired accuracy is obtained.94

Another method is considering the seniority number of the wave
functions or determinants to include. Notably, the doubly
occupied configuration interaction (DOCI) method restricts
the FCI space to the double occupied space or to the seniority
zero space, where only determinants that represent paired
configurations are included.95 While this produces a reduced
scaling, it is still exponential and therefore limited in a similar
way to the FCI. Numerous different seniority schemes have been
studied and applied successfully to treat small molecular
systems.96 Recently, machine learning techniques have been
implemented using artificial neural networks to select which
configurations are important contributions to the electronic
wave function.97,98

A major drawback of the CI method is that when the level of
excitations is truncated, it is no longer size-extensive.99 Using an
exponential excitation operator ansatz to include higher order
excitation determinants to the wave function allows for size
extensivity to be recovered, in a method referred to as coupled
cluster. The wave function in coupled cluster theory is often
written as

|Ψ⟩ = |Ψ ⟩̂eT
0 (6)

with

∑̂ = ̂
=

T T
i

N

i
1 (7)

where |Ψ0⟩ denotes a references state and T̂i is the operator that
creates all particle excitations of order i. For instance, T̂1 is the
operator that creates all possible single particle excitations and
T̂2 double excitations. The highest possible excitation operator is
T̂N, where N is the number of electrons in the system. Typically
the Hartree−Fock wave function is used as the reference state;
however other options also exist.
Analogous to the CI expansions, coupled cluster methods fall

into classes according to excitation order by including single and
double excitations (CCSD), including triple excitations
(CCSDT), and so on.100 Using a single reference state, the
Baker−Campbell−Hausdorff (BCH) formula can be used to
determine the ground-state energy. Due to the commutation
properties of the excitation operators, the similarity-transformed
Hamiltonian expansion is truncated at fourth order, thus
allowing for efficient energy calculations.99,101 While this allows
for low computational cost, the BCH formula only holds for
single reference states, and in this sense can not capture strong
static correlation. In addition, the coupled cluster ansatz is not
variational and is therefore similar to a perturbation theory.
A further reformulation of the CC ansatz involves ensuring

that the excitation operator is unitary such that

|Ψ⟩ = |Ψ ⟩̂− ̂†eT T
0 (8)

where T̂† is the conjugate transpose of the excitation operator T̂.
The unitary coupled cluster (UCC) formulation has the benefit
of being variational; however, the calculation proves to be
challenging as the BCH formula no longer truncates.102,103

Method development104,105 and computational improve-
ments106 have allowed coupled cluster methods to accurately
predict dynamic electronic correlation101 inmolecular and solid-
state systems.107 Moreover, there has been a renewed interest in
UCC as it can be used in conjunction with a classical
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optimization strategy in variational quantum eigensolver (VQE)
algorithms for quantum devices, a class of methods that will be
discussed in section 4.
In the following, we want to briefly comment on the validity of

the different approximations in the context of correlated
quantum matter. To this end, the scaling and performance in
capturing the dissociation of hydrogen fluoride for a sampling of
the above methods including Hartree−Fock, MP2, CCSD, FCI,
and DOCI is shown in Figure 4a,b, respectively. The scaling and

performance of density functional108,109 and reduced density
matrix methods are also included and will be discussed in section
3. It should be noted that a minimal basis of STO-6G was used
for these dissociation curves and improved results could be
obtained by using a more complete basis.
Many of these methods have been in use for decades, and

there continues to be an abundance of research dedicated to
extensions, improvements, and applications in prediction of new
quantum materials and phases of quantum matter. As discussed
above, one such recent development is mapping these methods
from classical high-performance computing onto quantum
devices. While this will be discussed in detail in section 4,
methods such as Hartree−Fock,1,3 full configuration interaction,
and coupled cluster theory have all been used as ansaẗze in
hybrid quantum algorithms on quantum devices. A considerable
amount of research is currently being dedicated to adapting
classical electronic structure theory methods to be amenable to
the framework of gate-based quantum computing.
Another approach to overcome the computational challenges

in the methods presented above is dividing the system into
smaller computationally cheaper subsystems and then combin-
ing these subsystems. When one or some subsystems and the

surrounding environment are treated at different levels of
theory, this is often referred to as quantum embedding.110

Embedding theories aim to predict properties of interest of the
subsystem or impurity without having to perform a costly
calculation on the whole quantum system. A plethora of
embedding models exist, each focusing on different methods for
dividing up the system and utilizing different computational
techniques for treating each part.110−113 For example, in
chemical quantum systems it is often natural to focus on
geometry-based approaches, carefully avoiding breaking chem-
ical bonds that contribute to the strong correlation of the
system.110 The computational techniques differ based on the
primary variable of interest. There are three main options
leading to three main types of embedding theories:110,114

Green’s function embedding,115 density functional embed-
ding,116−118 and density matrix embedding.119 Excellent and
comprehensive reviews of embedding theories are presented in
refs 114 and 110.
One of the most well-known embedding theories for the

treatment of strong correlation is dynamical mean-field theory
(DMFT) in which the infinite bulk system is mapped to an
impurity model that consists of a subsystem embedded in a
noninteracting environment.120−124 The correlated frequency-
dependent Green’s function of the impurity is determined self-
consistently, often resulting in predictions that approximate the
bulk limit. Since the calculation of Green’s functions is a more
complex task than the calculation of stationary states, DMFT is
more computationally costly than necessary for ground-state
calculations. An alternative embedding approach referred to as
density matrix embedding theory (DMET) utilizes the 1-body
density matrix as the variable of interest instead of the 1-body
Green’s function.119 In the noninteracting limit, this theory is
formally exact.110,119 Through the DMET correlation potential,
DMET self-consistently optimizes the impurity embedded in an
approximate many-body Schmidt basis for the environ-
ment.119,125 To treat the environment, often low-level theories
such as Hartree−Fock119,126 are utilized. The impurity or
subsystem is treated at a high-level of theory using methods such
as coupled cluster127 or complete active space self-consistent
field.128

DMET has been successfully applied to a variety of spin
models, including 1D119,127,129,130 and 2D Hubbard mod-
els,119,131−134 and in chemical systems. A few chemical examples
include small molecular configurations such as hydrogen rings,
hydrogen sheets, and beryllium rings126,135 and extended
molecular systems including boron-nitride sheets, polymers,
and diamond structures.127 Moreover, DMET has been
successful at capturing and predicting chemical processes
including hydrogen chain dissociation136 and organic sub-
stitution reactions.135 While DMET has shown to be an efficient
technique for solving ground-state properties, successful
extensions have also been developed for calculating excited-
state properties through response theory formulations.131,137,138

2.2.1. Predicting Molecular Qubits. A promising
application for these classical wave function electronic structure
methods, extensions, and the density methods, which will be
discussed in section 3, is in the investigation of molecular qubit
candidates. While many different types of qubits are being
experimentally prepared, verified, and utilized, spin-based
molecular qubits show great promise due to recent advances
led by experimental groups.29 The design of molecular spin
qubits is gaining interest due to their chemical properties, which
allow for ease of initialization into a well-defined quantum state,

Figure 4. (a) Approximate computational scaling of a variety of
electronic structure methods including Hartree−Fock (HF), density
functional theory (DFT), Møller−Plesset perturbation theory to
second order (MP2), variational 2-electron reduced density matrix
(v2RDM), coupled cluster single doubles (CCSD), and full and double
occupied configuration interaction (FCI and DOCI, respectively)
where N is the basis set size. (b) Dissociation curve of hydrogen
fluoride, comparing the accuracy of the Hartree−Fock, MP2, CCSD,
v2-RDM, DFT, and FCI methods.
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enhanced quantum coherence, natural implementation as
quantum logic gates, ease of integration into devices, and
potential for creation of quantum networks.139,140 Their atomic
precision, magnetic properties, and synthetic tunability make
them excellent candidates for quantum computing applications,
quantum sensors, and environmental probes.31,141−143 More-
over, through synthetic design and theoretical insight, molecular
qubits can be relatively easily produced, tuned, and con-
trolled.142

When considering molecular spin based qubits, nuclear or
electronic spins can be considered. While nuclear spins tend to
have longer coherence times, electronic spins offer a few unique
advantages, including precise spatial control due to their
confinement to molecular structures and ease of tunability due
to improved manipulation technology such pulsed electron
paramagnetic resonance.144,145 Electronic spins can be found in
radical, diradical, or coordination complexes spanning the
periodic table,145 including transition metal27 and lanthanoid
complexes.139,146 A few examples of such molecular qubit
compounds are shown in Figure 5.27

Like many other platforms for quantum computation, one of
the biggest challenges that molecular qubits face is in extending
and controlling coherence times.142 The coupling to environ-
mental degrees of freedom can impact decoherence;147

however, due to the quality of current synthetic techniques
and the flexibility of molecular compounds, the structure of
molecular qubits can be tuned to mitigate these detrimental
effects.25,148,149 Other challenges in the field consist of
improving the control of molecular excited states and
entanglement processes.142

The potential advantages of molecules as qubit candidates
would be in the versatility of molecular structures and bonding.
Utilizing different chemical types could allow for the tuning of
properties critical for their performance and application in
quantum information science. For example, organic molecules
offer advantages such as weak spin−orbit coupling,149 while
transition metal complexes offer the advantage of additional
flexibility through the choice of both metal center and ligands,
and additional vibronic degrees of freedom.27,142 While the
chemical components of individual molecular qubit candidates
are important, another key advantage of these specimens lies in

their intermolecular interactions. These bonds can be exploited
to construct molecular arrays and therefore qubit arrays.142

Going beyond single molecules, one study set out to verify a
theory that predicted that long coherence times should exist in
defects in conjugated carbon materials.30,150 In these works, the
molecular bonding structure was used as a form of qubit
engineering to create unpaired electronic spins in molecular
graphene nanostructures. Another experimental study extended
the concept of molecular qubits through use of metal−organic
framework chemistry to create an array of qubit candidates and
investigate their properties. This work demonstrates consid-
erable progress toward the creation of a quantum network based
on molecular qubits that could have wide reaching applications
in quantum information sciences.32

Themajority of the progress in spinmolecular qubits has been
driven by experiments; however, there is great potential for
theoretically and computationally guided search for the ideal
molecular qubits. One such example utilized CASPT2 to predict
the pulse electron paramagnetic resonance spectrum of the spin
density on the metal centers in molecular qubit candidates.31

Other work has utilized a combination of electronic structure
methods to investigate the spin-vibrational coupling in
lanthanide complexes151 and vibronic evolution in transition
metal complexes.152 As this field progresses, theory has the
potential to aid in the experimental efforts to design, tune, and
control interesting molecular properties in these spin qubit
candidates.
While classical electronic structure methods can be used to

investigate, predict, and optimize the chemical properties of
small- to medium-sized molecular compounds, they face
challenges in terms of computational cost when trying to
predict properties in larger material structures and molecular
networks. We recognize that molecular qubits are a nascent
platform, yet they represent a good model system for many of
the methods in correlated quantum matter discussed in this
Review. The remainder of this Review discusses alternative
methods to predict properties of such systems, including density
based approaches as discussed in section 3 for systems such as
molecular graphene nanostructures, algorithm developments on
quantum devices as discussed in section 4, and open quantum
system based approaches as discussed in section 5 for systems
such as molecular networks.

3. DENSITY-BASED ELECTRONIC STRUCTURE TO
PREDICT QUANTUM MATTER

In the previous section, we presented solutions to quantum
many-body problems in terms of a ground-state or excited-state
many-body wave function Ψ. While wave functions provide a
natural path to obtain observables, it is usually not feasible to
construct many-body wave functions due to the exponential
scaling of the parameter space. Other approaches to describe the
electronic ground and excited states of a quantum system can be
based on reduced quantities, such as the density matrix, the
electron density, or the Greens function, which will be discussed
in the following.

3.1. Reduced Density Matrix Methods for Correlated
Quantum Matter

An alternate approach for considering the electronic state of a
system is to consider the density matrix,

= |Ψ⟩⟨Ψ|DN
(9)

Figure 5. Crystal structures of a variety of the most relevant spin qubits
made from transition metal ions where purple, orange, pink, light blue,
green, maroon, light green, blue, yellow, red, and gray spheres represent
iron, copper, chromium, nickel, vanadium, bromine, fluorine, nitrogen,
sulfur, oxygen, and carbon atoms, respectively. Reprinted with
permission from ref 27. Copyright 2017 American Chemical Society.
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where ND is the N-particle density matrix and Ψ is the wave
function. The N-particle density matrix is the same size as the
wave function, so it would provide few computational
advantages over using the wave function directly; however,
since electrons interact pairwise, a natural object to consider is
the 2-electron reduced density matrix (2-RDM),153

∫′ ′ = Ψ Ψ* ′ ′D N N dN(1, 2; 1 , 2 ) (1, 2, ..., ) (1 , 2 , ..., ) d3 ...2

(10)

where the elements are given by

= ⟨Ψ| ̂ ̂ ̂ ̂ |Ψ⟩† †D a a a akl
ij

i j l k
2

(11)

where second quantization notation is used and a†̂ and a ̂ are the
fermionic creation and annihilation operators, respectively. The
2-RDM represents the probability of two electrons interacting in
a field of N − 2 electrons. While one can obtain a 2-RDM from
any wave function by contraction or integration, not every
general two-electron density matrix corresponds to an N-
representable wave function. To ensure that a 2-RDM
represents a physical N-particle system, the 2-RDMmust satisfy
additional constraints known as N-representability condi-
tions.154−160 Advances in semidefinite programming (SDP)
and the derivation of a formal hierarchy of ensemble N-
representability conditions on the 2-RDM have led to recent
applications of 2-RDM theory to important problems in the
study of strongly correlated molecules. Progress has also been
made in the study of pureN-representability conditions of the 1-
and 2-RDMs.161,161−170

For practical applications, an approximate set of necessary
constraints are the 2-positivity DQG constraints,157,171

≻̲D 02 (12)

≻̲Q 02 (13)

≻̲G 02 (14)

where 2Q is the two-hole RDM, 2G is the particle−hole RDM,
and M ≻̲ 0 implies that the matrix M has non-negative

eigenvalues or that the matrix must be positive-semidefinite.
These constraints are physically motivated as the probability of
finding two particles, two holes, or one particle and one hole
must always be non-negative. It should be noted that while the
DQG-positivity constraints are often sufficient for relatively
accurate electronic structure calculations, they are a subset of the
exact N-representability conditions.160,171

Several methods utilize the 2-RDM to determine ground and
excited electronic states, including variational and para-
metric172−186 2-RDM methods as well the solution to the anti-
Hermitian contracted Schrödinger equation.187−197 Here, we
will focus on the variational 2-RDM method, which is
particularly useful in capturing strong correlation in systems
important to molecular chemistry and condensed-matter
physics.15,198−205

The variational 2-RDM method consists of variationally
minimizing the energy of a system as a linear functional of the 2-
RDM,

=E K DTr( )2 2 (15)

where 2K is the two-body Hamiltonian underN-representability
constraints.155−160,206−211 The energy produced from this
constrained variational minimization is a lower bound on the
ground-state energy.161 While the DQG constraints in eqs
12−14 are generally sufficient for relatively accurate electronic
structure calculations, more complete sets of constraints have
also been explored, including the three-index T2 constraint
which requires that T2 ≥ 0.158,160,212 Constraining these
matrices to be positive-semidefinite requires the use of a form
of convex optimization known as semidefinite program-
ming.159,213,214 Beyond this application to electronic structure
theory, SDPs are important in several applications, including the
max-cut problem, economics, and combinatorics.203 In the
context of variational 2-RDM methods, recent advances in SDP
algorithms203 yield a scaling of Norb

6 and Norb
9, for DQG and

DQG with T2 conditions respectively, providing a substantial
improvement over wave function approaches to electronic
structure calculations with exponential scaling.

Figure 6. Applications of different flavors of the variational 2-RDMmethod andN-representability conditions. (a) Electron density contour plot of the
highest occupied molecular orbital in vanadium(III) oxo determined from a [42,40] active space variational 2-RDM method showing the additional
electron distributed over the ligands. Reprinted with permission from ref 7. Copyright 2016 American Chemical Society. (b) Electronic pictures for the
vanadium(IV) oxo complex (left) and vanadium(III) oxo complex (right) with the upper panel showing the results from the [42,40] active space
variational 2-RDM calculation and the lower panel showing the traditional results from ligand field theory. Reprinted with permission from ref 7.
Copyright 2016 American Chemical Society. (c) Vertical band gap for the acene chains of length one to five comparing CASCI, CIS, TDDFT, and the
ES-2RDM method using a π orbital active space. Reprinted with permission from ref 215. Copyright 2018 American Chemical Society. (d)
Dissociation curve of the NO+ molecule comparing the doubly occupied configuration interaction method with the variational pair 2-RDM method
using DQG and various DQGT constraints. Reproduced with permission from ref 216. Copyright 2018 AIP Publishing.
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The variational 2-RDMmethod has also been implemented as
a replacement for the wave function calculation in active space
methods such as CASSCF34,217,218 and DOCI.219−221 In the
CASSCF framework, partitioning the orbitals into core, active,
and valence allows for the variational algorithm to consider only
a subset of the total electronic space and consequently treat
significantly larger systems. There are several examples of this in
recent literature, including applications to quantum dots,201,222

organometallic compounds,7,223,224 conductivity and transport
in molecular junctions,225−228 exciton condensation,229 and
molecular periodic systems.230 One specific example is the
investigation and explanation of experimental phenomena such
as the reduction of a vanadium oxo complex.7 An active space
consisting of 42 electrons in 40 orbitals, which approximates
1021 variables in the wave function framework, reveals a ligand-
centered reduction produced through electron entanglement.7

The highest occupied molecular orbital (HOMO) for the
vanadium(III) oxo complexes, shown in Figure 6a, demon-
strates that the electron density is delocalized across the pyridine
ligands. This result contradicts both ligand field theory and
smaller active space calculations, which predicted metal-
centered reduction as shown in the level diagrams of Figure
6b where the vanadium(IV) complex is shown on the left and
the vanadium(III) complex on the right. This result demon-
strates the capacity of the active-space variational 2-RDM
method to predict electron transfer in chemical systems
accurately when multireference effects are important in the
ground-state wave function.
For many transformations in matter including photo-

excitation processes, ground-state calculations are insufficient
and capturing excited-state phenomena is critical. While some
early work in the RDM community studied excited-state spectra
for small molecular systems,231−234 recently these methods have
been improved to accurately capture optical band gaps in larger
strongly correlated molecules. Based on previous theories that
use the ground-state 2-RDM along with the Hermitian operator
method to calculate excited-state energies,231−233,235−238 a
recent study provides an improvement through the use of a
Hamiltonian-shifted regularization algorithm.215 The excited-
spectra 2-RDM method (ES-2RDM) was used to calculate the
band gaps of acene chains of varying lengths, which are in closer
agreement to the CASCI gaps than those from the time-
dependent density functional theory (TDDFT) and config-
uration interaction singles (CIS), as shown in Figure 6c.
Moreover, this method allows for the determination of
excitation energies for larger molecules, such as optical dyes,
which are important for optically sensing voltage in neurons239

with greater accuracy than comparable excited-state methods.215

ES-2RDM has since been applied to the band gap trend in
graphene nanoribbons,240 and shows promise for investigation
into excited-state phenomena in large molecular and quantum
material systems.
In addition the variational 2-RDM method has been used in

the pairing framework, also known as DOCI or seniority zero,
where only doubly occupied configurations are consid-
ered.95,216,219−221,241−244 While in the configuration interaction
context, restriction to the doubly occupied space maintains
exponential scaling, a similar restriction under the variational
framework reduces the scaling from Norb

6 to Norb
3.219,220 The

computational advantage comes from increased simplicity of the
structure of the positivity constraints under the pair
restriction.220 Early work was dedicated to considering bench-
mark small molecules to test the limitations of such a stringent

approximation, showing that despite the importance of orbital
selection and potential need for orbital optimization or rotation,
the pair approximation in conjunction with the variational 2-
RDM has the potential to be a powerful method.219 There are
two areas on which current research is focusing to improve the
pair variational 2-RDM method. The first area of focus is
determining the effects of utilizing N-representability con-
straints beyond the DQG conditions. Extensions from the two-
indexN-representability constraints to the three- and four-index
N-representability constraints have been considered, the latter
being used to consider the Heisenberg XXZ spin model of
quantum magnetism.216,220,245,246 An example of the effect of
increasing the order of the N-representability constraints on the
variational 2-RDM method in the seniority zero space can be
seen in the dissociation curve for the NO+ molecule in Figure
6d.216 As the molecule dissociates, all presented DOCI methods
capture the correlation; however, it can be seen that with
increasing N-representability constraints, the energy becomes
increasingly similar to the full DOCI solution. This shows that
increasing the N-representability constraints, and hence the
computational cost, can systematically increase the accuracy of
this method.216 The second area of focus is orbital selection.
Early work focused on orbital optimization;219 however, this
adds cost to the calculation, negating some of the speedup due to
the pair approximation. One study replaced the orbital
optimization procedure with an orbital localization procedure
to treat hydrogen chains, acene chains, and cadmium telluride
chains.220 The localization of the molecular orbitals allowed the
pair variational 2-RDM method to be approximately size
extensive, a trait that is lost when using the canonical molecular
orbitals.
From extensions to CASSCF and DOCI, variational 2-RDM

approaches leverage their polynomial scaling to reveal electronic
structure, which can aid in the design and understanding of
quantum correlated matter for applications in energy storage,
qubits, and catalysis, among others. An exciting direction for the
variational 2-RDM method is its recent adaptation for use on a
quantum simulator.247 While there has been plenty of focus on
the development of variational quantum eigensolver (VQE)
algorithms, which will be discussed further in section 4.2, the
majority of methods focus on the variational principle for wave
functions. The analogous RDM variational principle requiresN-
representability constraints, which were shown to reduce the
number of measurements required in VQE calculations248 and
act as an error mitigation scheme.247 The N-representability
constraints are imposed on the 1-RDM and the 2-RDM is then
reconstructed. The pureN-representability constraints for the 1-
RDM are sometimes referred to as the generalized Pauli
constraints (GPCs), and have been an area of intensive research
over the past decade. Coleman’s ensemble N-representability
conditions for the 1-RDM154 mimic the Pauli exclusion
principle,249

∑ =
=

∞

n N
j

j
1 (16)

and

≤ ≤n0 1j (17)

where nj are the eigenvalues and N is the particle number. This
means that the eigenvalues, or the natural orbital occupation
numbers, must remain between 0 and 1, while their sum must
equal the total number of particles in the system.While these are
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fairly simple constraints, the pure state N-representability
conditions have proven to be a more challenging topic. The
pure state N-representability conditions are necessary and
sufficient constraints placed upon the 1-RDM such that it
represents a pure state, or a state that can be represented by a
single wave function. The development of these pure N-
representability constraints has been a topic of much interest
due to their importance in quantum chemistry and quantum
information theory. Early work was dedicated to these
constraints for specific systems,250,251 such as the work of
Borland and Dennis, which derived conditions for three
fermions in six orbitals.251 These constraints are

+ − ≥n n n 05 6 4 (18)

with

+ = + = + =n n n n n n 11 6 2 5 3 4 (19)

where ni are the occupation numbers of the 1-RDM from largest
n1 to smallest n6. These constraints are an empirical rule that are
useful for three electron systems, such as H3 or the lithium
atom,16,164 but they do not provide a framework for systematic
generalization. More recently, a systematic method for
generating these 1-RDM constraints for systems beyond the
three fermion case was proposed,252,253 as well as for the 2-RDM
and general p-RDM.161 The geometry and physical relevance of
these constraints have been studied,163,254,255 as well as the
effects of the GPCs on the occupation numbers of atoms and
small molecules,16,163,168,256,257 spin systems,258,259 control of
entanglement,260,261 and methods such as the variational 2-
RDM optimization162 and reduced-density-matrix functional
theory (RDMFT).256 Recently, the three fermion constraints
were verified on a quantum device as shown in Figure 7.170 The

entire convex polytope represents the occupation numbers
available for the 1-RDM under the ordinary Pauli constraints,
while the yellow polytope represents the possible occupation
numbers for the 1-RDM under the generalized Pauli constraints.
The three highest eigenvalues of the 1-RDM as calculated on a
quantum device are shown to be within the polytope defined by
the Borland−Dennis constraints. This work was a novel
demonstration that the GPCs on the 1-RDM are obeyed on a
quantum device. The investigation into both ensemble and pure
N-representability conditions is critical for variational 2-RDM

methods and reducing the errors of chemical calculations on
quantum devices.
The generalized Pauli constraints have also been explored in

the context of minimizing the energy functional in reduced
density matrix functional theory.256 RDMFT is an alternative
approach to electronic structure, which combines density
functional theory, discussed in section 3.2 below, and the
reduced density matrix methods discussed above.262 In
RDMFT, the energy is expressed as a function of the 1-RDM,
though this energy functional is often minimized with respect to
the eigenvalues, ni, and eigenfunctions, ϕi, of the 1-RDM instead
of the 1-RDM as a whole. This subset of RDMFT calculations is
often referred to as natural orbital functional theory since the
eigenfunctions and eigenvalues of the 1-RDM are the natural
orbitals and natural orbital occupations, respectively. An
advantage of this method over traditional density functional
theory includes the explicit dependence of the kinetic energy
term on the 1-RDM, the introduction of fractional occupation
numbers,263 and the storage of more information in the 1-
RDM.264 A notable drawback of this method is that instead of an
eigenvalue equation, in the RDMFT framework the determi-
nation of orbitals is done through a computationally expensive
minimization. Many methods have been considered to address
the issue of natural orbital selection, including the use of
nonlocal potentials to obtain natural orbitals;265,266 however the
orbital determination is still the bottleneck of the calculation.
Similar to traditional DFT, a plethora of research has been
dedicated to designing and improving funct ion-
als.262,264,267−269,269−274 Through use of these improved and
novel functionals, RDMFT has successfully been used to capture
the dissociation of molecules,269,271,275,276 accurate band
gaps,277−280 and phase transitions.277,279 Since its inception,
many methods have extended the RDMFT framework281

including local RDMFT,256,282,283 excited-state RDMFT, and
time-dependent RDMFT.284−286 While we do not cover this
method and its impact in-depth here, the references and reviews
cited in this section are a good starting point for the interested
reader.
3.2. Density-Functional Theory Approaches to Compute
Quantum Materials

Another attractive wave function alternative is the method of
density-functional theory. By exploiting the Hohenberg−Kohn
theorem287 with the one-to-one correspondence between the
ground-state density given by

∫= Ψ* Ψn r r r r r r r r r r( ) d d ... d ( ... ) ( ... )n n n0 1 2 1 2 1 2e e e (20)

and the static external potential v0(r), it is possible to avoid the
explicit construction of the many-body wave function and
directly obtain observables by expressing them in terms of
functionals of the electron density. Although formally DFT is an
exact reformulation of Schrödinger’s equation, in practice these
functionals often remain unknown. The most prominent
example that has to be approximated in practical calculations
is the exchange−correlation (xc) functional. The quality and
accuracy of the calculation is therefore determined by the
underlying approximation for the xc potential.288

Many different routes have been explored to find approx-
imations for this xc potential; however, we include limited
discussion here as pertinent to the scope of this Review, and we
refer the reader to refs 289 and 290 for comprehensive overviews
of existing approximations. The local-density approximation
(LDA)291 is the most basic approximation of the xc potential,

Figure 7.The entire convex polytope represents the orbital occupations
of the 1-RDM allowed by the ordinary Pauli constraint, the yellow
polytope represents the orbital occupations allowed by the Generalized
Pauli Constraints. Each red point represents the three highest
eigenvalues of a 1-RDM generated experimentally by a quantum
computer. Reproduced with permission from ref 170. Copyright 2019
Springer Nature.
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where the electronic structure is considered as homogeneous
and the functional dependency of the electron gas is then used.
For the homogeneous electron gas, the exchange contribution
can be calculated analytically, while the correlation contribution
can be obtained to high accuracy by Monte Carlo methods.292

A natural extension to the LDA are approximations in which
spatial derivatives or gradients of the density are also considered.
Since the spatial derivatives are included in addition to the
density at a particular point, this level of treatment is called
“semi-local” and also referred to as a generalized gradient
approximation (GGA). Popular functionals here are the PBE293

approximation including its extension to solids (PBEsol),294

which is currently one of the most widely used functionals in
DFT calculations of quantum materials. With the development
of the first semilocal functionals, DFT became popular for
quantum chemistry applications.295 One way to systematically
include more information into the xc functional leads to the
inclusion of the kinetic energy component and is known as
“meta-GGA”, with realizations such as the recent SCAN
functional,296 which promises the accuracy of more computa-
tionally expansive approximations, such as hybrid-functional
calculations, which effectively mix Hartree−Fock and DFT
calculations with similar costs to a GGA functional.
Other recent developments with the design of efficient

numerical algorithms have pushed the field toward the direct use
of hybrid functionals. Well-known functionals include the
HSE06297 and the PBE0 functionals293,298 for solid-state
quantum material predictions, and the B3LYP108,109 functional
for molecular quantum systems. Further developments
pertinent to predicting quantum materials include dispersion
functionals,299−302 which can account for dispersion or van der
Waals interactions, range-separated functionals,303 and double
hybrid functionals,304 which mix together Hartree−Fock

exchange, a GGA functional, and a many-body perturbation
correction.
A recent and prominent example for a class of systems where

density-functional theory has been successful but also displayed
serious limitations, is in the understanding of the microscopic
structure and dynamics of quantum defects in wide-bandgap
semiconductor materials or “artificial atom qubits.”We show in
Figure 8, numerical results obtained using DFT for defect
emitters in diamond and monolayer hBN.
In this Thematic Issue, reviews by Zunger and Malyi12 on

“Doping Quantum Materials” and by Kagan and Bassett309 on
“Quantum Optical Nanostructures” discuss the recent progress
in this field in more detail, and we refer the reader to these
excellent reviews. Here we will focus on the computational and
algorithmic advances and opportunities in this growing field.

3.2.1. Predicting Artificial Atom Qubits in Solids. Point
defects in solids, including defect centers in silicon carbide
(SiC),310−334 point defects and dopants in 2D transition metal
dichalcogenides,335−352 nitrogen vacancy (NV)353−356 and
silicon vacancy (SiV)357,358 centers in diamond, or single
defects in hexagonal boron nitride (hBN),307,359−380 among
others,381−383 have seen rising attention in recent years.384−388

These systems have been identified as promising systems for a
wide range of quantum information applications, such as sensing
and metrology,389 computing,390,391 and use as quantum
repeaters for long-range quantum networks.392 The negatively
charged nitrogen vacancy center in diamond with a spin triplet
ground state is probably the most prominent one out of this list
and has been long studied and demonstrated in many
applications, including refs 354 and 393−419. The NV center
possesses both long-lived spin states and high-fidelity spin−
photon interfaces, which can enable quantum networking
protocols, and has been theoretically studied, for example, in

Figure 8. Defects in diamond and hBN using density-functional theory. (a) Pb atom shown in black in a split-vacancy configuration within the
diamond lattice, consisting of carbon atoms shown in blue. Reprinted with permission from ref 305. Copyright 2019 by the American Physical Society.
(b) Predicted thermodynamic charge transition levels for group III defect centers. GaV, InV, andTiV are found to be likely stable in the negative charge
state for diamond samples with naturally occurring nitrogen doping, while AlV is more likely to exist in the neutral charge state. Reprinted with
permission from ref 306. (c) Defect wave functions for ground and excited states in multilayer hBN for a nitrogen-vacancy defect (VN) with the
corresponding HSE based predictions shown in panel d reveal that complexes are found to offer more optically relevant defect bands within the gap.
Reprinted with permission from ref 307. Copyright 2020 Springer Nature. (e) Predicted luminescence spectra for the group III emitters in diamond
near room temperature conditions. Reprinted with permission from ref 306. (f) Potential energy surfaces computed for the product Jahn−Teller
system in the excited state of group IV neutral defects in diamond. Reprinted with permission from ref 308.
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refs 420 and 421. Despite these successes, there are also some
drawbacks connected to the NV center. In particular, the optical
applications of the NV center remain a challenge due to low
quantum efficiencies, with weak emission into the zero-phonon
line (ZPL). These limitations have spurred a theory-driven
search for alternative quantum emitters.
In the diamond host lattice, in addition to the NV center,

group IV quantum defects have been recently reported sparking
experimental and theoretical studies. Both the NV center and
the group IV centers replace one of the carbon atoms by a
vacancy and an additional carbon atom by the corresponding
element. While in the NV center, the nitrogen atom stays at the
position of a carbon site, in group IV elements, the substitutional
atom moves between those two carbon sites, as shown in Figure
8a for the PbV defect. The inversion-symmetric split-vacancy
structure of the group IV elements results from the defect
adopting a D3d point-group symmetry. The inversion symmetry
means the defect has no permanent electric dipole moment,
which makes their optical transition frequencies less sensitive to
electric field noise, which is often found for defects near
surfaces.422 In addition, they show more efficient emission into
the zero-phonon line than the NV. Recent experimental
advances have observed the negative charge state of these
defect complexes, that is, SiV− , GeV− , SnV− , and
PbV−,305,423−438 which have also been characterized theoret-
ically.439−441 The neutral charge state of the SiV has also been
observed experimentally.358,442−444 One fewer electron than the
SiV− gives rise to a spin triplet ground state reminiscent of the
NV center. A recent study also explores the excitonic excitations
of SiV0 and SiV−.445 While SiV0 requires the doping of the
diamond host with boron impurities for thermodynamical
stability, more recently, group III-related complexes in diamond
have been theoretically proposed306 some of which are predicted
to be stable in diamond intrinsically without the need for
additional doping, as shown in Figure 8b. Single photon
emission has also been explored for defects in 2D materials, in
particular for hBN.359−361 We show a representative example,
the VN defect, in Figure 8c,d, where the defect is the result of a
missing nitrogen atom.
From a computational perspective, these systems can be

described using density-functional theory on the PBE or HSE06
level, using large supercells to characterize their ground-state
behavior. With the inclusion of excited-state properties,
photoluminescence spectra can be predicted,446−450 as shown
in Figure 8e for the group III defects in diamond. Descriptions of
other prominent interactions, for example, electron−phonon
coupling, may be necessary for accurate predictions of ground-
and excited-state properties. In particular, some of these systems
show a prominent Jahn−Teller effect,308,420,421,439,451−453

demonstrated in Figure 8f. To include these electron−phonon
coupling interactions, these systems have been described by
model Hamiltonians parametrized using DFT data. To describe
the excited-state manifold, the method of constrained DFT
(ΔSCF), which consists of promoting an occupied to an
unoccupied orbital, can be used but is limited to weak
correlations and low-lying excited states.308,439

The Jahn−Teller interaction is one instance of electron−
phonon coupling and can be extremely important for accurate
predictions of solid state defects and periodic structures, as well
as molecules. In the diamond defects mentioned, such as NV
and SiV, localized electronic orbitals can be energetically
degenerate. When such degenerate orbitals are unequally
occupied, there exists the possibility that a symmetry-lowering

nuclear distortion can push the system to an overall lower energy
state, as first outlined by Jahn and Teller.454 The potential
energy surface depicted in Figure 8f shows one type of Jahn−
Teller landscape, where the coordinate axes represent directions
along particular nuclear displacements associated with the
Jahn−Teller distortion. The basic idea of this potential energy
surface is common for all Jahn−Teller-related phenomena: at
the high-symmetry configuration (where Qx = Qy = 0), the total
energy is a local maximum, and a low-symmetry configuration is
energetically preferable. There can exist distinct energy minima,
as shown in Figure 8f; however in general the potential energy
landscape resembles a Mexican hat. The distortion requires
coupling of associated vibrational modes and overall the
interaction is formulated as a case of electron−vibrational (or
electron−phonon) coupling.
The correlated nature of the electronic and nuclear degrees of

freedom in Jahn−Teller systems can be especially important for
correct predictions of not only energy levels but also
observables. As described in ref 455, dynamic Jahn−Teller
distortions, in which case the system effectively exists in a
superposition of the low-symmetry minima, can lead to
quenching of observables associated with electronic operators.
This is due to the strongly correlated nature of the electronic and
nuclear degrees of freedom, which strongly couple to form a
hybrid vibrational and electronic (“vibronic”) system. Electronic
observables can be strongly altered when acting on such vibronic
states, for example, the quenching of spin−orbit interaction.
Accurate modeling of this Jahn−Teller problem has been crucial
to predicting level structures and splittings consistent with
experiment,439,456 and likewise will be important for predicting
properties of novel emitters306,308 and molecular qubits going
forward.
The Jahn−Teller interaction is one example of a variety of

important electron−phonon interactions that can be critical for
correct prediction and understanding of correlated quantum
materials. In these electron−nuclear correlated systems, the
nuclear degrees of freedom cannot be ignored. Phenomena that
can emerge from this include things like charge density wave
(CDW) distortions, which can result in a symmetry-breaking
distortion in periodic systems that can alter the electronic
properties.457−462 Laser-induced phonon excitation can be used
to induce novel electronic properties and phenomena in general
(see section 3.4). Electron−phonon interactions can also be
crucial for understanding superconductivity in quantum
materials.463−470 These phenomena can also be modulated by
doping, which is covered in greater detail in the corresponding
Review by Zunger et al.12

Importantly, these phonon-related effects are often temper-
ature dependent. Thus, accurate models and understanding of
these phenomena are important for understanding possible
finite temperature effects associated with these systems.
Theoretically describing these types of interactions is challeng-
ing, as at the heart of most quantum chemistry and materials
calculations is the Born−Oppenheimer approximation471 that
allows the separation of the electron and nuclear degrees of
freedom. In situations where nonadiabatic effects are important,
these effects can be included in dynamical and time-dependent
cases by explicitly including the nuclei in the calculation, for
example, with the Ehrenfest or surface hopping approaches or
other methods, such as the exact factorization approach472 or
conditional wave function approach.473 More generally, a variety
of theoretical approaches based on first-principles frameworks to
describe electron−nuclear interactions exist, such as generalized
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density-functional theories,474−479 the nuclear-electron orbital
(NEO) DFT,480 coupled cluster,481 or density-functional
perturbation theory for electron−phonon interac-
tions.468,482−484

For systems where strong electronic interactions become
important, a different approach is essential. One augmented
DFT method to treat more strongly electron-correlated
materials within a density-functional theory framework is the
LDA+U approach. In its standard formulation, the DFT+U
method is an empirical method, in which the effective on-site
Hubbard U parameter is chosen prior to the calculation. More
recently, this approach has been extended, and it became
possible to evaluate the values of U and J ab initio and self-
consistently through linear-response techniques485−488 and with
the ACBN0 functional.489,490 Along similar lines, in recent years
the idea to combine the method of DFT and DMFT122,491 has
seen attention to describe strongly correlated materials, in
particular the strong Coulomb repulsion for materials that
feature partially filled d or f shells. This hybrid method is based
on the assumption that for the specific material it is possible to
separate the electronic degrees of freedom into a weakly
correlated part that can be treated on the DFT level and a
correlated part, which has to be treated with a different method.
These two methods are then combined in a self-consistent way.
Such a treatment can be expected to be important for systems,
where these stronger correlations induce a redistribution of the
electronic structure.492

Excited and nonequilibrium states play a fundamental role in
quantum materials. The following section will focus on classical
approaches that allow access to excited-state properties of
quantum materials. Later in this Review, we will discuss
approaches for computing relevant excited states of quantum
materials on quantum computers.

3.3. Time-Dependent Density-Functional Theory and
Quasiparticle Methods for Correlated Quantum Matter

In many cases of experimental relevance, it is necessary not only
to obtain ground-state properties of the system of interest but
also to access excited-state properties. A straightforward
calculation of some of the properties of low-lying excited states,
such as ionization energies, can be obtained by the ΔSCF or
constrained DFT approaches mentioned in section 3.2. In
general, a constrained DFT calculation can be used to calculate
the lowest state of a specific symmetry. Therefore for ionization
energies, ΔSCF is strictly defined. However, for charge neutral
excitations,ΔSCF is only strictly defined for the lowest states of
different symmetries. Nevertheless, ΔSCF may also be applied
to sets of low-lying excited states by promoting occupied orbitals
to unoccupied orbitals. In practice, such a procedure can work
well for triplet states that are well described by a single Slater
determinant, while it may fail for singlet states that show
multiconfigurational character.
A more general density-functional approach to access excited-

state properties is time-dependent density-functional theory
(TDDFT).493,494 Although TDDFT is in principle valid for any
out-of-equilibrium system, in practice TDDFT has been
particularly successful in the linear-response regime, from
which excitation energies and transition dipole elements for
many-body systems can be obtained. The solution of these
equations can either be obtained in the time-domain by an
explicit time-propagation495 or in frequency-domain by solving a
pseudoeigenvalue equation.496 Practically, to calculate the time-
dependent properties of real systems, we rely on approximations

for the exchange-correlation potential vxc(r, t), and the validity of
the calculation depends on these underlying approximations.497

In TDDFT, the simplest but also most widely used
approximation is the adiabatic approximation.495 In the
adiabatic approximation, we assume that the system adiabati-
cally follows the external perturbation and uses functionals that
have originally been developed for static or ground-state cases.
The adiabatic approximation is justified for certain quantum
systems, where the time-dependent density does not change too
rapidly. TDDFT is most successful in the linear response
regime496,498 where the change in the electron density, δn(rt),
and the external perturbation, δv(rt), are connected via response
functions χR

(1)(rt, r′t) = [n(rt), n(r′t′)]. In linear-response
theory, the adiabatic approximation restricts the calculation to
the single excitation manifold and practical calculations can be
performed using the eigenvalue (Casida) equation.496,498 These
equations have also found application for artificial atom qubits,
for example, in diamond499 and hBN.500 The latter study
compares the accuracy of a variety of different exchange−
correlation functionals and quantum chemistry methods for
defects with the conclusion that simpler GGA functionals are
typically not accurate, but hybrid functionals such as HSE06 can
accurately capture the energetics of such states, if the system is a
triplet state. To accurately describe the dynamics of strongly
correlated systems out-of-equilibrium using TDDFT, recently
the ACBN0 functional has been extended to the time domain.
For example in ref 501, it has been shown that the absorption
spectra of transition metal oxides, such as NiO or MnO, are well
reproduced by TDDFT+U simulations. DFT and TD-DFT
methods have been shown to be effective at describing out-of-
equilibrium plasmonic excitations.502−509

Beyond linear response, there remain different challenges
within TDDFT. A key open problem is extending beyond the
adiabatic approximation.510 Although many studies have been
devoted to the analysis and construction of the exact time-
dependent exchange−correlation functional for one-dimen-
sional511 and real-space systems,512,513 a simple, intuitive
approximation remains unknown. More general DFT ap-
proaches are known to fundamentally underestimate the
fundamental band gap, also called the band gap problem of
DFT.514,515 Recent approaches such as the use of hybrid
functionals or generalized Kohn−Sham approaches515 have
been successful in improving the accuracy of the band gap
description. An additional challenge for DFT approaches is a
correct description of excitons, the bound states of electrons and
holes. Some studies have shown that in principle those
excitations can be described with TDDFT.516,517 Recent work
has included the development of stochastic approaches518 to
make TDDFT more computationally efficient.
A more rigorous framework to calculate excited-state

properties and obtain a more accurate description of the band
gap and excitonic effects of molecular systems is the many-body
perturbation approach using the interacting Green’s function
(GW).519−527 The Green’s function can be defined for a specific
number of particles, for instance, the one-particle and two-
particle Green’s function are sufficient to extract information
about the quasiparticle excitations and the optical responses of
an interacting system. In practice, the Green’s function can be
defined in terms of the electron field operators, which leads to
the Martin−Schwinger hierarchy. This can be reformulated
formally by introducing the electronic self-energy Σ(1,2). In a
similar spirit as density-functional methods, the self-energy
Σ(1,2) can be divided into Hartree and exchange−correlation
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parts by using the Hartree potential, vH, and numerically
approximating Σxc. In many-body perturbation theory the self-
energy is routinely expanded using Feynman diagrams.528 By
formulating the vertex correction to second-order, one finds an
equation that can be seen as the linear-response formalism of the
self-energy to a change in external potential leading to the so-
called Bethe−Salpeter equation (BSE).521,529,530 These vertex
corrections account for exchange−correlation effects between
electrons and also includes electron−hole interactions.
Aside from shifts in predicted transition energies531−533

relative to DFT, electron−hole interactions can lead to bound
collective excitations known as excitons. These may coalesce
into more complex subsystems, such as bound pairs of excitons,
biexcitons, and singly charged excitons or trions. The relevance
of these collective states depends on the strength of the
electron−hole interaction. In many two-dimensional systems,
such as transition metal dichalcogenides, the importance of
excitonic effects is very prominent, as the exciton binding
energies can be on the order of electronvolts and both exciton
and trion peaks have been observed experimentally.534 These
interactions can be important for looking at behavior of the
“bulk” electronic states across the 2D flake as well as localized
defect-induced states and their excited-state transitions.535

While excitonic effects are particularly prominent in these 2D
monolayers, they can also be important for considering
optoelectronic properties in other materials and chemical
systems.
Another useful aspect of GW with BSE is access to

multireference excited states in quantum matter. One
particularly interesting and timely application is in the case of
defect states with excited-state singlets. The energetic position-
ing and interaction with the triplet subspace of these singlet
states can be critical for understanding optical efficiency as well
as achieving controllable spin-readout536,537 of defect states.
Due to the inherent multireference nature of these states,
methods beyond conventional DFT, such as GW(+BSE)538 or
TDDFT are required to capture them. Altogether, these unique
types of quantum interactions accessible within a GW
framework makes it an intriguing method for future study and
characterization of a variety of quantummaterials. We anticipate
many contributions in quantum materials for quantum
information to emerge from these methods in future.
With this, recent theoretical and computational developments

have made GW-based methods more computationally acces-
sible. Conventional GW calculations require that the screened
Coulomb interaction W and the noninteracting Green’s
function G are determined by a perturbative expansion over
Kohn−Sham electronic states. The expansion requires explicit
treatment of both occupied and unoccupied states, and often the
expansion over unoccupied states yields slow convergence, such
that hundreds of unoccupied states may need to be considered
for converging a particular system.539,540 Recent work that
achieves convergence without the need for treating so many
excited states, done by solving self-consistent linear Sternheimer
equations, has been theoretically demonstrated541 and imple-
mented in available codes.542,543 In addition, advances have
been made using stochastic methods such that the computa-
tional cost of a “single-shot” G0W0 calculation scales linearly
with the number of electrons (∼ N( )e ).544,545 This is a notable
improvement over standard approaches, where the scaling is
between N( )e

3 and N( )e
4 . With this improvement, efficient

G0W0 calculations have been demonstrated for large systems

consisting of 104 electrons.546 The use of stochastic orbitals has
also been applied to solving the Bethe−Salpeter equation,547
where again explicit calculations have been demonstrated with
systems consisting of thousands of electrons.
In addition to bulk-like structures, GW and BSE approaches

have also been developed and applied for finite molecular
systems, including refs 548−554. Similar to periodic systems,
these techniques generally improve excited-state quasiparticle
energy predictions compared to conventional DFT and TD-
DFT methods and can also reveal the importance of electron−
hole correlations.555 GW-based methods can also be useful in
understanding electronic interactions with other perturbations
in a given system, such as phonons. The quasiparticle self-energy
due to external perturbations can shift the eigenenergy of the
state via the real part of Σ and can also contribute to the line
width of the electronic state via the imaginary part of Σ. In all
practical calculations of these self-energy contributions, a many-
body perturbation theory approach is needed to describe the
interaction. However, often the interaction itself is evaluated
using semilocal, DFT-based techniques,468,556 which is not
strictly translatable to a many-body description or quasiparticle
self-energies. On the other hand, GW methods are naturally
written in terms of self-energies and include nonlocal electronic
effects. Recent work has outlined methods that incorporate
phonon interactions into a GW framework in both periodic
systems557 (denoted as GWPT) and molecules.558 The periodic
case demonstrates that for the correlated superconductor
Ba1−xKxBiO3, typical DFT-based approaches cannot capture
the significant (>50%) enhancement of the electron−phonon
interaction strength resulting from many-electron correla-
tions.557

In general, the prediction of novel bulk quantum materials,
point defects, or molecules requires methods that give an
unbiased physical description of the system. The GW-based
techniques can offer a powerful toolkit for accessing the
optoelectronic response of these systems, including prediction
of band gaps and effects of electron−hole correlations. In
particularly correlated systems, the use of GW techniques
extended to look at interactions with other perturbations such as
phonons or electric fields may be critical, as possible correlations
might have important feedback on the associated interaction
strengths, which would not be otherwise captured in DFT-based
approaches.

3.4. Light−Matter Control of Correlations in Quantum
Materials

Driven by new experimental and theoretical advances, recently
there has been a push to explore the strong coupling regime of
light and matter, that is, a regime where quantum chemical
systems and quantum matter are strongly coupled to the
electromagnetic field. This regime of strong light−matter
coupling opens many new directions by creating novel
polaritonic quasiparticles and new states of matter, with
promises such as the on-demand control of quantum
systems.559−561 For a detailed discussion of opportunities in
strong light−matter coupling from a photonics and optics
perspective, we refer the reader to the reviews in refs 8 and
562−570. Our discussion is centered on theoretical and
algorithmic advances in treatment of strong light−quantum
matter interactions and opportunities to use such coupling in
quantum information science.
Driven by experimental demonstrations in optical cavities562

and nanophotonic resonators,571 the strong coupling regime of
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many emitters has been explored, leading to a collective
enhancement of the light−matter coupling and strong coupling
down to the level of single emitters (Figure 9).572 Different
experiments have shown that this regime can be realized for a
wide range of systems of chemical, physical, or biological
interest. Examples of relevant recent studies include the
demonstration of changes in chemical reactivity under strong
light−matter coupling, such as the chemical reactivity for
ground-state reactions573 and excited-state photochemical
reactions574 and the suppression of photo-oxidation pro-
cesses.575 Other examples besides reactivity examples include
the realizations of hybrid organic−inorganic polariton LEDs,576
single-molecule tautomerization,577 the inversion of singlet and
triplet excited states,578,579 femtosecond transient absorption
spectra under ultrastrong coupling,580 the deep strong coupling
limit in plasmonic nanoparticle crystals,581 and intermolecular
vibrational energy transfer.582

Recent theoretical studies in this field include the study of the
effects of anharmonicity of vibrational modes on strong light−
matter coupling,583 effects beyond the dipole approximation,584

surface-enhanced Raman spectroscopy,585,586 or the origin of
asymmetric emission.587 Other effects studied are ensemble-
induced strong light−matter coupling of single emitters,588

polariton-assisted remote energy transfer,589 electron trans-
fer,590 or excitation transfer,591 among others. The broad
spectrum of effects seen in such light−matter control of
quantum systems necessitates novel theoretical and computa-
tional approaches.
Previously many of these experimental results were described

by using effective Hamiltonians inspired by work in the
established quantum optics community. More recently, the
field has seen a push toward the use of ab initio methods in
quantum electrodynamics to describe electron−photon inter-
actions. While traditional ab initio methods, such as those
described in the prior sections, are capable of accurately

describing the electronic structure, the electromagnetic field is
typically not accounted for. In cases of strong light−matter
coupling, the treatments of electronic and photonic degrees of
freedom become equally important, making it essential to go
beyond conventional electronic ab initio methods.
The nonrelativistic electronic Hamiltonian can be formulated

to account for transverse electron−photon interactions by
changing to the length gauge and in dipole approximation as
follows:592,593

∑ ∑ λω
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α α α
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where Ĥ0 represents the electronic Hamiltonian and R
represents the electronic dipole operator with R = ∫ dr n(r)r.
In the length gauge, the conjugated variable to the magnetic field
is the electric displacement field that is given by

πω̂ = ∑ ̂α α αqD 4 . The electronic displacement field is
coupled here in the dipole approximation where the bosonic

operators ̂ = ̂ + ̂α ω
†

α
q a a( )1

2
and ̂ = ̂ − ̂α

ω †αp i a a( )
2

are

connected to the electric field at the center of charge by
λπ ω̂ = ∑ ̂ − ·α α α αqE R4 ( ). The operators a†̂ (a ̂) create

(destroy) one photon in mode α.
Starting from the Hamiltonian in eq 21, one can define a

density-functional theory for electron−photon coupled prob-
lems as follows: Analogous to the electronic problem, a basic set
of variables has to be chosen. In this case, these are the electron
density, n(r), and the electric displacement field, qα. These basic
variables then can be used to formulate a one-to-one
correspondence between the basic (internal) variables and the

Figure 9. Schematics of prototypical configurations that reach strong light−matter coupling with an optical cavity on the left and a nanogap strongly
coupled to nanophotonic excitations on the right. Strong light−matter coupling has be achieved experimentally for single molecules, collective
coupling in ensembles of molecules, and two-dimensional and three-dimensional quantum materials as indicated in the middle.
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external variables, vext(r) and jext
(a), that allows for the

reformulation of expectation values as functionals of the internal
variables. This density-functional theory is also called quantum-
electrodynamical density-functional theory (QEDFT)592−595

and has been applied to electronic strong coupling in molecular
systems for ground-state596−598 and excited-state prob-
lems,599,600 as well as vibrational strong coupling9 and cavity
losses.601

Following this work in QEDFT, other electronic first-
principles methods were generalized to account for electron−
photon interactions. Key examples include the Maxwell−
Hartree−Fock wave function approach,602 the multiconfigura-
tion time-dependent Hartree method,603 the polaritonic
coupled cluster approach,604,605 the exact factorization ap-
proach606,607 for electron−photon systems, a conditional
approach,608 extensions of the Born−Oppenheimer approx-
imation,609−611 and efficient Maxwell−Schrödinger propagation
schemes.612,613 First-principles descriptions of electron−photon
problems are still nascent. We expect that in the next few years,
with joint experimental and theoretical advances, more accurate
ab initio models will explore the realm of strong light−matter
interactions for quantum chemical systems. There are still many
open questions in this field, including what is the role of a
realistic description of the optical cavity, including its
imperfections, in an ab initio description, and questions about
the precise change of the transition state in vibrational strong
coupling experiments, the effect of solvents in these experiments,
and effects beyond the dipole approximation.
New avenues to explore light−matter coupling can be

expected if the rich possibilities of different electromagnetic
environments are considered. More specifically, can we achieve
strong coupling for regimes that are systematically different from
a more simple one-mode coupling as is the case for optical
cavities? These ideas can be explored by using the framework of
macroscopic QED,614−616 which provides a consistent quantiza-

tion procedure for absorbing and dispersive media and allows at
the same time for an accurate description of systems and their
response if they are embedded in complex photonic structures.
Using this scheme, the fundamental material variables are the
microscopic charge currents in the medium and the quantized
field operators, both of which have the correct commutation
relations leading to Maxwell’s equations in the classical limit. In
this description, the losses of the system are already intrinsically
included in the field operators and do not have to be introduced
as parameters. The same is true for electron−photon coupling
strength and the broadening and line widths of electromagnetic
modes and excitations.
Recent theoretical proposals617,618 and experimental demon-

strations619 have shown that strong light−matter coupling can
be used to access ionizing transitions. Typically, transitions
above the ionization threshold strongly hybridize with the
continuum, leading to Fano line shapes. Strong light−matter
coupling can now be used to hybridize with this transition,
leading to a lower polariton state below the ionization threshold,
effectively decoupling it from the continuum. In this way, new
states can bemade accessible. It will remain to be seen how those
states can be explored for chemical applications such as novel
reaction pathways in photochemistry.
One of the key open questions concerns the limit of light−

matter coupling strength. Recent experimental progress has
demonstrated the so-called ultra and deep strong coupling
limit581,620 for plasmonic systems, going far beyond the early
demonstrations of this limit in circuit QED,621 thus pushing the
experimental limit of accessible systems and consequently their
theoretical description. Since changes in the electronic ground
state have been shown to be rather small in regular strong
coupling,622 ultra and deep strong coupling are a very different
case due to the scaling with coupling strength. In particular,
probing these experimental regimes would benefit from a first-
principles description.597 Recent proposals have used coupled

Figure 10. (a) Experimental setup for SrTiO3 coherently excited with tunable wavelength pulses. Adapted from ref 625. Reprinted with permission
from AAAS. (b) Dynamical ferroelectricity in SrTiO3 phase diagram. While bulk SrTiO3 is paraelectric, small amounts of strain can induce a
ferroelectric transition. Alternatively, this transition can also be induced dynamically through vibrational excitation. Adapted from ref 625. Reprinted
with permission fromAAAS. (c) Cavity-mediated resonance in nonlinear phononics with the schematic setup of a sample material in a terahertz cavity.
Adapted with permission from ref 626. (d) (left) Frequency mismatch between an IR-active and two Raman-active phononmodes hinders the transfer
of energy between them and (right) formation of two phonon−polariton modes with frequenciesΩ+ andΩ− due to the hybridization between an IR-
active phononmode leads tomore efficient excitation transfer.626 Adapted with permission from ref 626. (e) Light−matter phase diagram as a function
of the electronic interaction strength U and the light−matter coupling strength g with the novel superradiant excitonic insulator phase.627 Reprinted
with permission from ref 627. Copyright 2019 by the American Physical Society.
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systems with high transition dipole moments623 to couple
directly to excitations with weak transition dipole moments. It
has been shown that single-molecule strong coupling can be
achieved through coupling to an additional ensemble,588 which
motivates engineering of the environment to effectively enhance
the light−matter coupling.
Besides the use of optical cavities to control material

properties, we can also expect novel applications for strong
light−matter coupling in emerging quantum information
science applications624 and in probing quantum matter.
Quantum sensing of quantum matter in regimes of ultrastrong
coupling is an exciting new area. There are two closely related
concepts here: harnessing ultrastrong coupling (enabled by
optical or superconducting circuitry) for the detection of
intrinsic quantum material properties and correlations, and
creating new states of quantum matter prepared via ultrastrong
coupling to the cavity.
Next we turn our attention to the manipulation of quantum

materials using strong light−matter interactions. This is a
particularly attractive direction in engineering quantum matter
for quantum technologies, as it enables the control at
fundamental time scales and access to novel nonequilibrium
states of matter.559,628,629 Ultrafast optical methods505,508 have
been recently used as a new tuning knob to induce insulator-to-
metal transitions,630 topological phases,631,632 ferroelectric-
ity,625,633 and transient superconductivity in copper oxides634

and organic crystals.635 While this provides a tantalizing
opportunity to explore new quantum phases, particularly in
the case of transient superconductivity, key questions remain on
the underlying excitation mechanisms, as well as on how to
optimize and stabilize such short-lived electronic phases. Many
of these studies explore the nonlinear interactions between
phonon modes that govern the behavior of vibrationally highly
excited quantum matter. Two of the most prominent examples
of nonlinear phonon induced states include superconductivity
far above the equilibrium critical temperature629,636 and light-
induced ferroelectricity and ferroelectric switching.625,633 One
example of how optical cavities can be used to control the
redistribution of energy from a highly excited coherent infrared-
active phonon state into the other vibrational degrees of freedom
using nonlinear phononic interactions has been proposed
theoretically in ref 626. In this work, the hybridization of the
infrared-active phonon mode with the fundamental mode of the
cavity induces a polaritonic splitting that can be used to tune the
nonlinear interactions with other vibrational modes in and out of
resonance, as demonstrated in Figure 10c. In a typical material,
the IR-active phonon mode with frequency ΩIR is out of
resonance with two Raman-active phonon modes with
frequencies ΩR, preventing efficient coupling between them.
By splitting the IR-active phonon mode in a terahertz-frequency
cavity, one of the polariton branches is shifted into resonance
with the Raman-active phonon modes, enabling efficient energy
redistribution. This work broadens the range of materials in
which resonant nonlinear phononic processes can be exploited
to yield nonequilibrium states of matter. Concepts in cavity
control of nonlinear processes enable a new pathway for
quantum optical engineering of new states of matter. The
analysis presented here is applicable to resonant coupling
mechanisms between IR-active phonon modes and other
fundamental excitations in solids and molecules.
One of the hallmarks of quantum materials is that their

electronic ground state can be extremely susceptible to small
perturbations. This susceptibility presents an opportunity to

engineer these quantum materials, for example, by small tweaks
to their chemical composition, lattice structure, or symmetry,
leading to a dramatically altered ground state and uncovering
interfacially correlated quantum effects with dramatic changes to
conductivity, superconductivity, and magnetism.

3.4.1. New Directions in QED Control of Correlated
Quantum Materials. Research in this direction has been
motivated by theoretical proposals and experimental results that
suggest that placing materials in a cavity or other environment
with a strong dielectric response can also substantially affect the
many-body physics. This includes exciton−polariton conden-
sates637 or superfluidity638 formed by hybrid quasiparticles
composed of photons and excitons in semiconductors,639

driving a material through an excitonic insulator transi-
tion,627,640 polaritons in excitonic insulators,641 the manipu-
lation of the ferroelectric phase-transitions,642 and nonlinear
phononics.626 Recently, various studies have suggested an
influence of strong light−matter coupling with different
mechanisms on superconductivity.643−647 It has also been
studied that an unconventional dielectric environment can
enhance the transition temperature of superconductivity. The
underlying idea of cavity-enhanced superconductivity is that by
embedding a material in an appropriate dielectric environment,
key modes may be changed in a way that is advantageous for
stabilizing the superconducting phase. Further, the cavity modes
can couple to carriers, serving as a new “boson pairing glue” and
possibly leading to new kinds of superconducting states.645 This
so-called cavity-mediated superconductivity is particularly
appealing in nonequilibrium regimes, which may enable the
field to attain nonthermal distributions. However, cavity-
activated phenomena in superconductors remains an exper-
imentally largely unexplored field with only very recent first
experimental realizations.623 Inspired by recent developments
on nonlinear phononics in optical cavities,626 other possible
examples for light−matter altered effects can be expected not
only in chemical reactivity, but also in other molecular relaxation
mechanisms, such as intramolecular vibrational energy redis-
tribution (IVR)648 in ground-state potential energy surfaces.
Similar effects have been shown for excited-state relaxation
processes649 and anharmonicities.583

3.5. Emerging Directions in Descriptions of Correlated
Quantum Matter

Much like other areas in the physical sciences, ideas from
machine learning and data science, in particular neural networks,
are seeing more applications in capturing correlations in
quantum chemistry and quantum material science. Ideas that
have been already successfully realized include using neural
networks as a representation for quantum states in electronic
structure calculations650 for problems such as the Hubbard and
Heisenberg models, and now even in chemistry for small
molecules reaching chemical accuracy.651 Molecular-orbital-
based machine learning methods have also been applied to
accurately predict post-Hartree−Fock energies in molecular
systems.652−654 Along similar lines, deep neural networks655,656

have been explored as representations for quantum wave
functions655−657 to accurately represent electronic correla-
tions.652−654

4. QUANTUM ALGORITHMS FOR QUANTUMMATTER

The focus in both wave function and density based electronic
structure has been on reducing the exponential scaling of the N-
body problem. While classical electronic structure theory has
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manymethods to address this problem as discussed in sections 2
and 3, all of these methods face the challenge of describing the
intrinsically quantum mechanical nature of the problem using a
classical representation, which can become impractical for
highly entangled or correlated states. Because of this, many open
problems are still far beyond the current classical computing
capabilities. An alternative pathway toward a solution for
quantum systems is the use of quantum devices, which leverage
their inherently quantum-mechanical nature for computation.
The first quantum algorithms suited particularly for quantum

system predictions appeared as early as the late 1990s with
various attempts at simulating fermionic Hamiltonians. Recent
developments and improvements of functional quantum
hardware devices have re-energized the field, leading to both
research and commercial interests in exploiting the inherent
quantum properties of the machinery to achieve Feynman’s
original vision dating back to 1982.658 There has been much
anticipation over the potential for quantum computers to be able
to solve classically intractable chemical, physical, or combina-
torial problems, increasingly so since the recent demonstration
of quantum advantage using a superconducting device by
colleagues at Google and NASA.1 As they highlight and
demonstrate,3−5 a co-design approach to the hardware and
algorithms is critical to utilizing the advantages offered by small-
scale noisy quantum devices. We note that there has also been
compelling progress in cold-atom and ultracold Rydberg
quantum “emulators”659 that are beyond the scope of this
Review.
There is a considerable push in the quantum computing

community to achieve algorithms with nonexponential complex-
ity for strongly correlated systems with applications in excitonic
quantum matter, many-body quantum states, large-scale
entangled states, and high-temperature superconductivity.
Each of these has remained a “holy grail” problem in condensed
matter physics and quantum chemistry. Remarkably, despite
decades of intense effort, we still lack a full theoretical
understanding of the workings of high-temperature super-
conductors, thereby precluding rapid progress in raising the
critical temperature from less than half of room temperature660

under ambient pressure. Notable recent developments under
high pressure have demonstrated critical temperature up to 250
K.661

This search for a theoretical description and an understanding
of the phase diagram has animated large-scale research in
quantum simulations of the Hubbard (or Fermi-Hubbard)
model, presenting a high-reward application of quantum
algorithms in correlated quantum matter. Tractable and
accurate quantum algorithms to address these applications
would be transformative not only for the quantum materials
community but across the physical sciences.
Practical applications on current quantum devices are

challenged by the susceptibility of the devices to various noise
mechanisms, effectively limiting the number of operations that
can be performed. To this end, research has been focused on
hybrid quantum−classical algorithms that combine classical
resources, which are much more established and error-tolerant,
with quantum computation. For chemical systems, the resource
estimates to use quantum computers to elucidate the reaction
mechanism in complex chemical systems have been suggested to
be within reach of near-term quantum devices.662

Recently, there have been several excellent reviews on the
topic of quantum algorithms for quantum chemistry and
materials science applications, including refs 663−666, to

which we refer the interested reader for an in-depth introduction
to quantum algorithms from various perspectives. In section 4.1,
we primarily focus on introducing the concepts of quantum
computation for applications in quantum matter simulations.
We then give an overview of recent progress on algorithm
development for modeling physical systems using quantum and
hybrid classical−quantum hardware suitable for the NISQ area
in section 4.2. In section 4.3, we present a brief outlook on the
field, including error mitigation schemes and protocols for
scalable quantum networks. We recognize that this field is vast
and fast-paced with important papers appearing daily; our
Review captures key contributions to the field, constrained by
our original motivation to highlight the potential of new
quantum algorithms to discover entirely unexplored regimes of
quantum matter.

4.1. Early Algorithms and Quantum Computation of Matter

Early work on quantum algorithms such as Grover’s667 and
Shor’s668 algorithms brought to the forefront the potential for
computational speed-ups due to quantum resources. A few years
later the concept of quantum speed-ups was transferred over to
physical and chemical systems such as approximation of
partition functions for Ising spin glasses,669 calculation of
thermal rate constants,670 and simulation of fermionic
systems.671 Around the same time, the quantum phase
estimation algorithms (QPEAs) emerged.672 However, these
original algorithms faced the challenge of requiring very deep
circuits. To successfully perform the necessary operations, error
mitigation schemes on current quantum devices that are
inherently noisy (NISQ devices) are insufficient, and fault-
tolerant quantum computers would be essential.664,673 Despite
these challenges, the advent of the QPEA triggered a plethora of
algorithms applied to chemical and physical systems,674

including an algorithm for simulating many-body Fermi
systems,675 followed by the first algorithm that allowed for the
calculation of eigenvalues and eigenvectors of a local
Hamiltonian.676 This novel approach allowed for the first
calculation of static electronic structure properties of a system
on a quantum simulator.676

An impressive push forward for the field of electronic
structure was presented in 2005 when Aspuru-Guzik et al.
proposed and validated an algorithm for calculating molecular
energies on a quantum device.677 Using the FCIHamiltonian on
the quantum device and using the Hartree−Fock wave function
as a reference, correlation effects were taken into account for
small molecules.677 This algorithm proved to require only
polynomial scaling in terms of system size, suggesting great
potential for quantum speed up while treating quantum
chemical systems. Further work was done by replacing the
Hartree−Fock wave function with a wave function from MC-
SCF to obtain an energy spectrum for molecular systems that
included excited-state energies.678 These early quantum
algorithms showed great potential toward more efficient
modeling of electronic structure. However, their requirements
of many qubits and large gate depth renders them impractical on
existing NISQ devices. This obstacle inspired investigation
toward hybrid quantum−classical algorithms, which can be
computationally efficient by dividing the work between the
robust classical devices and more noise-susceptible quantum
devices. The theory, advances, and application of these
algorithms are discussed in the next section.
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4.2. Hybrid Quantum−Classical Algorithms

Currently, the majority of quantum algorithms relevant to
physics and chemistry applications are hybrid algorithms. In
these methods, part of the computation is performed on a
classical device, typically a parameter optimization step, while
the remaining part is done on a quantum device. Both parts of
the calculation can interact or are iterated, when necessary. A
general schematic of a generic hybrid algorithm is shown in
Figure 11. In the figure, the rail diagram in the center shows a
calculation using a classical device (teal squares), which
generally corresponds to a classical initialization of the
parameters of interest. Information is then passed to a quantum
device (purple circles), which performs an additional calculation
and is then measured. The classical device can read in the
outcome of the quantum measurement and in the majority of
cases, many such cycles are performed iteratively until a
convergence threshold is obtained. Above the rail diagram, we
show an energy diagram to demonstrate the iterative procedure,
here the decrease of the system energy during the calculation for
an arbitrary quantummechanical system, while on the bottom of
the figure an iterative improvement on molecular orbitals can be
seen.
4.2.1. General Concepts of the Variational Quantum

Eigensolver Algorithm. Early work in hybrid algorithms
includes many-body simulation algorithms679 and calculations
on the Hubbard model.680 More recently, the most widely used
hybrid algorithm has been the variational quantum eigensolver
(VQE), which is designed to variationally minimize the
expectation value of the full molecular Hamiltonian based on
the variational principle. This minimization strategy leads to
solutions of eigenvalue problems by using classical resources for
parameter optimization in an outer loop and quantum resources
for quantum state preparation and measurement in an inner
loop.681−684 Within this scheme, the VQE algorithm requires
the definition of the system Hamiltonian and the specific
parameters that can be optimized. One way to define these
parameters is based on the classical unitary coupled cluster

(UCC) method102,103,685,686 discussed in section 2.2. The
number of terms in the many-body Hamiltonian scales
polynomially, and the number of possible excitations used to
define the UCC wave function also scales polynomially. Since
the Baker−Campbell−Hausdorff series does not termi-
nate102,103 for UCC, its complexity is exponential on a classical
device, and no general efficient implementation of UCC is
known on classical computers. In contrast, this state can be
prepared and measured efficiently on a quantum device. After
initial state preparation and measurement of the expectation
value on the quantum device for a specific initial guess, the
classical computer can then be used via an optimization
algorithm to provide a new set of parameters leading to a
lower total energy. This procedure is iterated until a
convergence criterion is met, resulting in the lowest eigenvalue
of the Hamiltonian.681,682

In practice, to map the electronic operators onto qubits,
fermion-to-spin mappings,687 such as the Jordan−Wigner
transformation,671 parity transform,688 or Bravyi−Kitaev689
transformations, can be used. Other mappings, such as those
based on ternary trees have been put forward recently.690 Once
the electronic operators are mapped onto qubits, the UCC state
can be constructed. To construct this state on the quantum
device, the Trotter expansion is used,691

=+

→∞
e lim (e e )A B

n

A n B n n/ /
(22)

whereA and B are one- or two- particle operators contributing to
the UCC operator. This expression is only exact if the operators
A and B commute or in the limit of n → ∞, and it therefore in
general requires truncation. In practice it has been shown that
even truncation to first order can often be sufficient to obtain
accurate results, since the variational nature of the algorithm can
mask the truncation error.692,693 However, in general first order
Trotterization still requires a high gate complexity, which is one
of the drawbacks of this approach. Multiple studies have been
dedicated to investigating other VQE ansaẗze and general-

Figure 11. Generic hybrid quantum−classical algorithm where classical resources are used for optimization and quantum resources for state
preparation and measurement. As the algorithm iterates, the molecular energy is decreased and the predicted molecular orbital density becomes more
accurate.
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izations,686,694 such as a VQE ansatz based on the particle
preserving exchange gate to achieve excitations695 and con-
strained VQE schemes.696

In comparison with the early quantum algorithms discussed in
section 4.1, a strength of the VQE algorithms lies in their use of
shorter circuits with more measurements,693 allowing for
adaptability to a wide variety of quantum hardware. Since its
inception on photonic qubits, VQE has also been used on
superconducting qubit683,697 and trapped ion devices.698,699

Early experimental work on superconducting (SC) NISQ
devices at IBM Research successfully produced potential energy
surfaces using the VQE ansatz for small molecules, including H2

and BeH2.
683 This was a major achievement for the field at the

time; however, imperfections in the potential energy surfaces
arose from the quantum calculations. While experimental setups
and hardware can be responsible for some of these
imperfections, this study inspired further theoretical method
development to improve upon these methods. Many studies
have focused on extending the VQE to increase accuracy,
including state and ansatz preparation improvements,693,700,701

which will be the focus of the next section.

4.2.2. Extensions of VQE. A recent adaption of the VQE
scheme has used a transcorrelated Hamiltonian that is
connected to the original Hamiltonian by a similarity trans-
formation, showing increased accuracy without the need for
extra quantum resources.702 Another such study aimed to
increase the accuracy specifically for strongly correlated systems
by allowing the system to determine a quasi-optimal ansatz. This
method is referred to as the Adaptive Derivative-Assembled
Pseudo-Trotter variation, or the ADAPT-VQE, and is outlined
in Figure 12a.693 In this schematic, the first step is performed
classically and therefore omitted from the diagram. However, it
is the standard first step for VQE and involves computing the 1-
and 2-electron integrals then transforming the fermionic
Hamiltonian into a qubit representation. The ADAPT-VQE
was demonstrated on several molecular examples, one being the
BeH2molecule. The potential energy of dissociation, the error as
compared to FCI, and the number of variational parameters
required for the ansatz are shown in Figure 12b,c,d respectively.
To date this method has been tested on a simulator and has
shown substantial improvement toward the accuracy of the VQE
algorithm for molecular dissociation energies.

Figure 12. (a) Schematic depiction of the ADAPT-VQE algorithm where a collection of operators are defined in an “operator pool” to be used to
construct the ansatz. The wave function is initialized, operators are selected from the pool, a trial state is prepared, and then the gradient is measured. If
the convergence criteria is not met then the operator with the largest gradient is added to the ansatz for a new VQE calculation and the process is
repeated. (b) Potential energy as a function of nuclear coordinate of BeH2 in units of hartrees. (c) Error between the ADAPT-VQE energy and the FCI
energy in kcal/mol for BeH2. (d) Number of variational parameters required for the ansatz used in the energy calculation in panel b. Reproduced with
permission from ref 693. Copyright 2019 Springer Nature.
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VQE has also found applications beyond the established
chemical systems, including strongly correlated quantummatter
systems. In such systems, hybrid quantum−classical DMFT and
DMET algorithms suitable for NISQ devices have been
proposed and realized by using VQE as the impurity
solver.703−706 Similar ideas have been applied using the
constrained random-phase approximation approach702 to
investigate color centers with defects in wide-band gapmaterials,
also discussed in section 3.2. While research continues to be
dedicated to the improvement of the VQE method in terms of
accuracy and efficiency, there also exist many extensions of the
VQE algorithm to broaden the scope of applicability to different
quantum system regimes including excited states, spin states,
and energy derivatives.
Excited states play a fundamental role in quantum chemistry

and condensed matter physics, including in predictions of
reaction rates and optical spectra. Many extensions of the VQE
a lgor i thm ex i s t to t rea t exc i t ed - s t a t e phenom-
ena.681,682,697,707−709 One of the first such techniques was the
folded spectrum method, which was proposed in the original
VQE work some time ago.681 While this method has the ability
to successfully capture excited-state properties, it requires a
quadratic increase in the number of terms in the effective
Hamiltonian and consequently, a significant increase in the
number of required measurements.710 There are Lagrangian-
based methods that require variationally minimizing the
Lagrangian instead of the original Hamiltonian682 to obtain an
approximation for the excited state. The quantum subspace
expansion (QSE) is yet another approach that has been popular
in the last few years and is based on linear response theory.697,707

Essentially, after obtaining a wave function from a quantum
channel (defined by a set of Kraus operators), a subspace of low-
level excited states is approximated. The key drawback of the
quantum subspace expansion is that the quality of the excited
states (and corresponding spectra) obtained depends heavily on
errors introduced by the linear-response expansions and on the
chosen ansatz. However, an advantage of theQSEmethod is that
it can be used as an error mitigation scheme, a topic that will be
discussed in detail in section 4.3. Yet another excited-state
extension of VQE is referred to as the witness-assisted
variational eigenspectra solver,710 which augments the objective
function to include the energy and an approximation for the
entropy. A control ancilla qubit is considered along with the trial
state, with the control qubit acting as an “eigenstate witness,”
where its entropy measurement nears zero if the optimized trial
state is arbitrarily close to an eigenstate of the Hamiltonian. A
tunable parameter is used to bias toward excited states; this
parameter is set to zero for the ground state as we might expect
and then is tuned for each successive iteration such that the
resulting states correspond to approximate excited states of the
systems. Using either an iterative phase estimation algorithm or
a Hamiltonian averaging approach,707 the corresponding
energies can be extracted. There are certainly other methods
out there and this is a rapidly developing area at the vibrant
intersection of quantum chemistry and quantum information
science.
There has also been relevant work in extensions of VQE to be

able to capture electronic properties of ions and different spin
states as well as excitation spectra.696,707,708 One such example,
referred to as the multistate contracted VQE, was able to
successfully capture the transition energies and oscillator
strengths in an 18-chromophore light-harvesting complex.711

Another interesting extension to the VQE algorithm is for the

treatment of nonequilibrium steady states,712 which has the
potential to lead to the treatment of open quantum systems
using quantum resources.
While energies are important properties for any quantum

chemical or material system, the derivatives and gradients of
these energies also provide valuable physical insight including
optimal molecular geometries, partition functions, and vibra-
tional frequencies.713 By derivation of analytical formalisms and
quantum circuits, the VQE algorithm has been extended to
measure energy derivatives.714,715 A recent study has inves-
tigated thermodynamic properties of molecules by using VQE
on a NISQ device to construct potential-energy surfaces.716

These surfaces are used to construct a Morse potential to
mitigate noise and provide vibrational energy levels on a classical
computer. Using these parameters and the potential, the
partition function can be computed as a function of temperature
leading to thermodynamic observables of the molecule. These
extensions broaden the scope of VQE by allowing access to these
quantities more directly, which are critical to both electronic
structure and chemical reactivity.715Moreover, these parameters
can be obtained using similar quantum architecture and circuits
as those used in the original variational calculation.714

As previously mentioned a strength of the VQE framework is
in its adaptability to a wide variety of quantum hardware. For
successful adaptation across different platforms, optimization of
an algorithm is crucial since parameters such as the number of
qubits and circuit depth is currently limited. Moreover, the
circuit structure and gate set availability need to be taken into
account when implementing these algorithms on real devices.
For variational quantum algorithms, quantum circuit structures
often break the symmetry of the Hamiltonian.717 To overcome
this challenge, an adapted-variational scheme was proposed to
restore the spatial symmetry through postprocessing classical
application of a projection operator.717 This algorithm showed
increased fidelity of the ground state while adding versatility to
the hardware by using the same ground-state circuit structure to
approximate low-lying excited states.717

One of the biggest challenges that quantum algorithms face is
that increasing system size is generally associated with an
increase in the required number of qubits and the circuit depth.
Inspired by classical active space methods as discussed in section
2, a recent study approximated the core and virtual orbitals using
a classical computer while utilizing a quantum device for the
active space calculations.718 Strategically chosen additional
measurements make up for the accuracy lost due to the active
space approximation. Through this method, the accuracy of a
20-qubit representation was matched with a 4-qubit quantum
computer for the hydrogen atom.718

When developing novel algorithms, validation and verification
is important in part due to the high error rates and initially
unknown nature of errors of NISQ hardware. This has led to
interesting research questions in how to systematically bench-
mark results of quantum computations. Toward this goal, a two-
electron ansatz was developed that uses the N-representability
constraints of a two-electron system, discussed in section 3.1 to
efficiently partition local and nonlocal degrees of freedom on the
classical and quantum computer for a basis set of arbitrary size.
The ansatz can be used for benchmarking small molecular
systems and was used to evaluate 4- and 6-qubit simulations of
H2 and H3

+, respectively, on superconducting quantum
devices.719 The ease of classical simulation for the electron
pair and related pair theories could serve as verifiable targets for
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benchmarking molecular simulations as quantum devices
continue to expand.719

4.2.3. Beyond VQE: Other Hybrid Quantum−Classical
Algorithms. A major drawback of the VQE algorithm is that it
often requires high-dimensional optimization over a nonoptimal
surface thus requiring rapidly increasing computational cost
with increasing system size. While improvements continue to be
made to the VQE algorithm to overcome this obstacle, a variety
of alternative algorithms are emerging. One recently presented
alternative approach is based on the classical anti-Hermitian
contracted Schrödinger equation (ACSE), mentioned briefly in
section 3.1. The ACSE is a contraction of the Schrödinger
equation onto the 2-particle space and has been successfully
used to capture strong correlation in atoms and mole-
cules.187−197 Classically, this method is limited because it
requires reconstruction of the 3-RDM; however, in the quantum
analogue this dependency can be eliminated through the
preparation of an appropriate state.720 This novel study
introduces a quantum eigenvalue solver which solves a
contracted eigenvalue equation for efficient, scalable molecular
simulations on quantum computers that does not rely on
derivative-free optimization. This method is benchmarked on
IBM’s quantum devices and a quantum simulator with the
ground-state dissociations of H2 and H3, respectively. Due to its
potentially short circuit depths and exponential speed-up over its
classical counterpart, the quantum ACSE algorithm shows great
promise for capturing strong correlation in molecules using
quantum devices.720

The search for near-term quantum advantage has been highly
focused on variational algorithms, one of the most promising
being the quantum approximate optimization algorithm
(QAOA). This algorithm leverages quantum computers to
solve combinatorial optimization problems by encoding a cost
function as an operator in the Hilbert space. QAOA uses ideas
similar to VQE for classical optimization problems and has been
shown to work for a variety of optimization problems, especially
those in the NP-Complete regime such as theMax-Cut problem,
or its extensions. The Max-Cut problem involves grouping of
nodes in a graph into two subgroups by cutting their edges.
These cuts are optimized in such a way that the added weights of
the edges are maximized. This problem has been shown to be
NP-complete and has many applications in network science and
in statistical physics.721 Some avenues of potential application in
correlated matter include spin models, molecular structure
problems, and other optimization frameworks relevant in
condensed matter physics. The first quantum algorithm to
tackle the Max-Cut problem was the QAOA algorithm.722 Since
the Max-Cut problem can be mapped onto a classical Ising
Hamiltonian, it can also be solved on a quantum device similarly
to the VQE method.723,724 Research on these quantum
problems has in turn inspired developments of improved
classical algorithms by exploiting parallelization.725 The varia-
tional nature of this algorithm means it includes generalized
parameters that must be trained to match the problem instance,
so repeated calls to a quantum device are necessary to traverse
the parameter space and find global optima. Additionally, it
includes an iteration variable that decides how many full
applications of the operator are to be executed. This iteration
variable increases with the size of the constraint problem, and
thus the length of the quantum circuit does as well. Largely,
research in this area has focused on a small number of iterations,
mainly one or two due to the ability to find exact best
parameters. Recent developments have been made when

looking at higher numbers of iterations and on how best to
train parameters at given iteration levels and quantification of
results versus other methods. One strategy for parameter
training that shows promise is doing most or all training on a
scaled-down version of the full problem in an attempt to save
quantum resources while maintaining high-fidelity results.
In contrast to classical problems, defining a quantum

advantage for problems in correlated quantum matter is not as
straightforward and remains an open question. Many of the
classical optimization problems can be mapped onto the Ising-
spin Hamiltonian, which is diagonal in the underlying
computational basis. One advantage that a quantum algorithm
may offer over classical algorithms is the potential to avoid and
escape local minima. However, we note that a quantum
advantage for these problems is under heavy debate in the
community.
While the primary focus of this Review is on correlated

systems, since the ideas of VQE are general, that is, to solve an
eigenvalue problem, the principles and similar ideas have found
applications beyond electronic structure theory. A few examples
include quantum algorithms solving sets of linear equations such
as of the form Ax = b. It has been shown that quantum
algorithms can solve such problems exponentially faster than
classical algorithms.726,727 These ideas have also been extended
to problems in data science with the least-squares fit728 and also
extended to nonlinear partial differential equations.729

Besides the developments on universal quantum computers,
there have been various efforts to realize adiabatic quantum
computing,730 with realizations up to 1800 qubits based on
annealing-based quantum processors. These devices can also be
useful for quantum chemistry applications731 in particular if
other mapping schemes are used.732 So far practical simulations
of chemical systems remain limited for these devices.

4.2.4. Quantum Convolutional Neural Networks for
Quantum Phase Classification. The emergence of NISQ
devices has co-occurred with increased interest and progress in
classical artificial intelligence and machine learning techniques.
Neural network-based algorithms in particular have garnered
considerable attention for their ability to learn complex patterns
from very high dimensional data sets. Physicists have also sought
out pure scientific applications of various machine learning
algorithms, particularly in condensed matter physics, where
algorithms have been trained to reproduce or even discover
phase diagrams by probing complicated long-range patterns of
entanglement and classical correlations in many-body quantum
systems. Since the dimension of the Hilbert space of a quantum
system grows exponentially with the number of qubits, a classical
computer will be unable to perform computations on, or even
store the state of a quantum system with a large (N ≳ 40)
number of sites. Currently, there are NISQ devices containing
more high fidelity qubits than can be simulated on a classical
computer. We expect that the community will be able to extend
or improve upon existing machine learning algorithms, as well as
develop new algorithms, by taking advantage of these devices.
This could enable learning tasks to be performed on large
quantum and very large classical data sets. The quantum
convolutional neural network (QCNN) is a hybrid quantum−
classical algorithm with a structure similar to that of classical
convolutional neural networks.733 QCNNs can learn the
features of a quantum data set by performing a binary
classification task on a nontrivial phase of quantum matter,
and we expect such approaches to be realized on near term
trapped-ion NISQ devices. An important reason to use a
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trapped-ion device here is to leverage intermediate measure-
ments, that is, to measure a fraction of the active qubits and
condition subsequent operations on their measurement out-
comes, needed for QCNNs to perform such classification tasks.
Looking ahead, successful demonstration of a QCNN for
classification on a quantum device will pave the way for
development and implementation of novel hybrid quantum
machine learning algorithms, which will likely take further
advantage of intermediate measurement capabilities of trapped-
ion devices, and other architectures.

4.3. Error Mitigation to Enable Practical, Near-Term
Quantum Algorithms for Strongly Correlated Quantum
Matter

One of the biggest challenges that quantum algorithms face is
the transition from running on ideal quantum simulators to
realization of these algorithms on actual “noisy” devices. While
devices are continuously improving, they are prone to errors,
decoherence, and noise. Ideally, scalable error correction
techniques could be used to catch and eliminate errors;
however, the computational cost of such a task is resource-
intensive and currently impractical. A low-cost alternative is
error mitigation or error resiliency schemes being built into
algorithm design, leveraging algorithm-hardware co-design
approaches. These improvements are critical toward the goal
of using these devices to accomplish more complex tasks in
computational quantum materials science. General error
mitigation schemes include active error mitigation, where the
impact of errors are artificially boosted and then the zero-error
case is extrapolated.684,734−736 Many schemes have been
proposed specifically to mitigate error while using hybrid
variational algorithms to consider the properties of physical
systems.
Several of these error mitigation schemes are motivated by the

physical nature of the system of interest. One such method relies
on the reduced density matrix approach247 as mentioned in
section 3.1. This work recognized that the quantum computer
measures the 2-RDM and can be assisted by physically
motivated constraints placed on the system density matrix,
referred to as the N-representability constraints as discussed in
section 3.1. In this work, at every iteration of the VQE on the
classical device, the occupation numbers of the density matrix
are confined to obey the Borland−Dennis constraints prior to
feeding an improved set of parameters back into the quantum
device. The result of this procedure is a physically motivated
error-mitigation scheme, and it has produced a state-of-the-art
dissociation curve of the H3 molecule, accurately predicting the
Mott phase transition.247 A second physically motivated error
mitigation scheme was presented in recent work that exploited
the inherent symmetries found in physical systems.737 A
symmetry of a system is an operator that commutes with the
system Hamiltonian. Due to this commutation relation, the
Hamiltonian can be block diagonalized within the eigenspaces of
its symmetry. The system’s eigenstates can therefore be
considered by performing the investigation within a single
target eigenspace of the symmetry. Since the resulting
eigenstates should remain within the target eigenspace, errors
due to certain types of noise can be detected and discarded based
on symmetry verification during or after the calculation.
Symmetry verifications have been performed using multiple
protocols and have been shown to successfully reduce the error
due to noise, as benchmarked on the ground-state dissociation
curve for a hydrogen molecule.737

A widely used error mitigation scheme is the quantum
subspace expansion (QSE) technique, which was developed to
explore the low energy excited subspace of a system and
consequently mitigates the effects of decoherence.697,718,738,739

In this protocol, an estimate for the ground-state wave function
is obtained from the VQE algorithm. A quantum subspace
expansion is applied by measuring additional correlation
operators to form an approximate matrix representation within
an extended subspace. From this approximate matrix, low-lying
excited-state energies and improved energies for the ground
state can be obtained, while minimizing the errors that could
arise due to the quantum channel.707 The QSE technique has
also been used in conjunction with a superconducting-qubit-
based processor to consider the ground and excited states of a
hydrogen molecule.697 This protocol is outlined in Figure 13a,

where classical and quantum operations are shown in blue and
yellow, respectively, and the QSE technique is used on the
resulting converged state. The qubit preparation and measure-
ment pulse sequence corresponding to the algorithm are shown
in Figure 13b. This study showed successful error mitigation for
incoherent errors, which further suggests potential for larger-
scale quantum calculations.697

Small-scale partial quantum error correction schemes with
near term applications, as well as ideas for full-scale error-
correction, have been proposed. Many of these can be achieved
by measuring syndromes of corresponding parity check
operators and accordingly applying recovery operations, which
are computed by a classical decoding algorithm. One class of
examples are topological quantum codes, such as surface
codes,740,741 which are implemented on a two-dimensional
grid of qubits with local check operators. These codes offer great
promise as they result in high error thresholds by introducing the
concept of stabilizer qubits, yet they are currently still
impractical due to their large overhead.742

Figure 13. (a) Schematic of the QSE-VQE algorithm with classical and
quantum resources shown in blue and yellow, respectively. (b) Typical
qubit preparation and measurement sequence consisting of a projective
heralding measurement, single-qubit and two-qubit pulses, tomography
pulses, and finally a projective readout. Reproduced with permission
from ref 697. Copyright 2018 American Physical Society.
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Next we present two recent and exciting examples of practical
quantum algorithms to capture quantum dynamics while
leveraging error mitigation strategies. The first is predicting
exciton condensates on NISQs. An interesting practical
application of quantum computation in capturing correlated
quantum matter was recently presented in predicting the
creation and characterization of exciton condensates.743 Exciton
condensation occurs when excitons, or particle−hole pairs,
produce a superfluid single quantum state. Understanding
superfluidity in exciton condensates has the potential to aid in a
variety of technological advances from wire design to efficient
room-temperature energy transport.229,744 A recent study
prepares a highly entangled state on 3−53-qubit IBM quantum
computers, which represent 3−53 particles, respectively.743

Using the largest eigenvalue of a modified particle−hole density
matrix as a quantum signature of exciton condensation, the
presence and the extent of exciton condensation was evaluated.
These results reveal the formation of an exciton condensate of
photons, illuminating a new avenue for the creation and
characterization of exciton condensates. This study also
highlights the potential for using different quantum computing
architectures to facilitate preparation of different exciton
condensates.743 The second example involves exploiting the
natural mapping between molecular vibrations and photonic
waveguides. Boson sampling was one of the first experimentally
accessible systems able to challenge the computational power of
classical computers with early proposals including the
calculation of Franck−Condon profiles (FCPs) with quantum
optical networks, using the connection between molecular
vibronic spectra and boson sampling.745 As an example, refs 746
and 747 have simulated the vibrational dynamics energy
transport and relaxation of small molecules including harmonic
and anharmonic effects using a versatile photonic chip.
Fully leveraging quantum computers for scientific discovery

presents numerous challenges due to the experimental and
heterogeneous nature of quantum hardware, and the gaps in
essential software abstractions and controls needed to program
this hardware in the near term. Software for quantum computing
is still being developed, and therefore the development of
executable code for quantum hardware using current strategies is
arduous. In quantum computers, efforts to realize a set of
abstractions analogous to classical computing and create “layers”
of the quantum software stack are underway. Many of these have
been large open-source projects co-designed with quantum
hardware to ensure that the approaches are scalable with larger
and more complex circuits. Currently, different types of
hardware have different instruction sets, therefore both the
basic computer operations and the programming language are
still being defined. In addition, reducing the error rates is
essential for maximizing the reliability of the results produced by
current hardware. To overcome these challenges, recent
developments have introduced efficient schemes that allocate
the quantum program, consisting of an allocation of logical
qubits, and the sequence of circuits onto physical qubits,
incorporating the device specific constraints.748−753 The
traditional approach to compiling and executing quantum
circuits is restricted to using a highly limited set of “native” gates
and does not easily allow for the ability to optimize and
generalize quantum operations at the pulse level, though some
hardware providers (like IBM) have given users pulse-level
access to overcome this issue. While the native gates are
converted into pulse sequences designed for optimal fidelity of
individual single- and two-qubit operations for execution on a

universal quantum computer, they lack diversity and flexibility
for optimal performance in specific tasks. More recently,
quantum hardware providers have started offering open-source
access designed to enable quantum instructions at the level of
individual analog pulses. Initial studies have demonstrated that
such basic pulse-level optimizations can yield remarkable gate
and circuit fidelity improvements. A default implementation of
native quantum gates uses fixed pulse shapes and duration found
through prior calibration to maximize fidelity of individual
operations. This approach, while offering the advantage of
simplicity in implementation, suffers from suboptimal overall
performance when applied universally to all quantum circuits,
particularly in the context of SC NISQ devices. Given one of the
primary constraints of NISQ devices, the limited quantum
circuit depth, reducing the duration of microwave pulses that
implement quantum operations directly increases the number of
gates that can be executed within the limited coherence time of a
qubit. Unfortunately, reduced pulse duration inevitably leads to
an increased level of errors that arise from higher pulse
amplitudes and wider spectral components of the corresponding
pulses. Using quantum gates that are always realized by pulses of
fixed amplitude and duration, therefore, aims to achieve optimal
balance between pulse duration and gate fidelity. We anticipate
important advances from the field in improved overall fidelity of
quantum computation enabled through pulse-level control,
thereby enabling larger calculations of quantum materials.
The efficient control of quantum systems creates a

competition between the need to couple the system to the
control fields while minimizing the detrimental influence of the
environment. Accounting for the environment is thus
indispensable to the high-precision control demands of
quantum technologies. Thus, a different approach toward
improving the fidelity of qubit states and therefore the accuracy
and noise-resiliency of quantum algorithms is to borrow tools
from the field of open quantum systems and explicitly
incorporate effects of the environment, which will be the focus
of the next section in this Review.

5. DECOHERENCE AND NOISE IN QUANTUM
SYSTEMS

Many electronic structure methods treat quantum systems in a
vacuum as closed systems, without taking their environment into
account. Realistic quantum systems interact with an environ-
ment, and in many cases, this interaction dictates both their
properties and dynamics. The dynamics of the system and
environment together can be treated as closed and therefore
evolved under unitary transformations; however, such a
treatment quickly becomes computationally intractable.754,755

A common approach is to trace out the bath degrees of freedom
and consider the dynamics of the reduced density matrix as an
open quantum system under the influence of the environment.
Due to the openness induced by this framework, the dynamics
can no longer be mapped to a unitary evolution, and more
complex methods are required. Moreover, depending on the
choice of system and environment partitioning and the relative
time scales of dynamics, interesting physical phenomena, such as
memory effects, can arise. Despite these complications, how
quantum systems evolve under the presence of an environment
is important for the study of most molecular processes. One
example is the excitonic energy transfer in reaction centers such
as photosynthetic light-harvesting complexes.756,757 It is also
critical to the development and improvement of novel quantum
technologies, since decoherence and noise currently strongly
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impact NISQ devices, the depth of quantum circuits available for
practical use, and the storage of quantum information.663

Quantum information technologies use the principles of
quantum superposition and nonlocal entanglement for
applications in computing, sensing, and communication.
Applying concepts from the field of open quantum systems by
explicitly simulating molecular and physical qubit candidate
dynamics and their environment has the potential to improve
our understanding of decoherence and noise effects. This in turn
has the potential to lead to control protocols that can protect
qubits from the environment, decreasing the detrimental effects
of the noise and therefore increasing quantum fidelity.
A schematic of this fidelity loss to the environment can be seen

in Figure 14. The left panel shows a Bloch sphere representation
of an arbitrary qubit state in the ideal situation where the qubit is
isolated with no unwanted interactions with its surroundings.
Environmentally induced processes, including but not limited to
longitudinal and transverse relaxation, lead to detrimental noise
effects, such as damping and dephasing, as depicted in the center
panel. These noise effects can result in the loss of critical
properties of the qubit and therefore a loss in fidelity of the qubit
state, as demonstrated in the right panel.
A more specific example is depicted by the general point

defect in a solid-state lattice, as depicted in Figure 15. Electronic
structure methods can predict the properties of a single defect as
discussed in section 3.2; however, defect−defect interactions
and defect−lattice interactions can be treated as system−bath
interactions from a master equation or numerical open quantum
system perspective at a reduced computational cost. The nuclear
spins from the nuclei in the lattice behave as a spin bath, while
the spins in surrounding defects also interact with the system of
interest, leading to decoherence and shorter spin lifetimes.
Several methods have been developed to treat the dynamics of
such defect spin systems, including multiple flavors of cluster-
expansion (CE) methods, which will be discussed in section
5.2.2. Looking to the future, we anticipate these methods to aid
in the prediction of the behavior of a local array of defects in a

quantum material, descriptions of local and long-range proper-
ties such as interdefect coherence lifetimes, minute adjustments
to the spacing or arrangements of defects, and direct engineering
of the structure−function relationships that govern specific
quantum behaviors needed to enable scalable integration. This
integration is critical, especially for the application of solid-state
quantum technologies, as additional qubits in quantum
repeaters will be needed for error correction, entanglement
distillation, and quantum repeater multiplexing. These quantum
repeaters constitute the essential nodes of a quantum network,
the subject of intense current and future science and engineering
endeavors across the globe.
When discussing the treatment of open quantum systems

through a reduced density matrix framework, the separation of
system and environmental degrees of freedom dictates the
nature of the dynamics. If the whole system is partitioned such
that the system is weakly coupled to the environment, then
Markovian evolution will arise. In more complex cases, such as

Figure 14. Effects of environmental noise on a qubit as depicted on a Bloch sphere: An ideal qubit (left) would be perfectly isolated and immune to the
detrimental effects of environmental noise processes such as longitudinal and transverse relaxation and therefore unwanted effects including damping
and dephasing (center), which decrease the desired state fidelity, shown by a spread of possible states (right).

Figure 15. General defect in a lattice where the defect is an open
quantum system (purple) interacting with both the lattice and other
defects (teal).
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when the system is strongly coupled to the environment, the
system evolution can deviate from strict Markovianity.758 The
measure of Markovianity and potential applications of the
deviation from strict Markovianity are discussed in section 5.1.
An overview of methods developed to treat open quantum
systems in a variety of regimes is given in section 5.2, and
applications of these methods, along with an outlook of this field
with respect to quantum technologies are discussed in section
5.3.

5.1. Markovianity: Definition and Measures in Quantum
Systems

Markovian evolution occurs when the dynamics of a system are
driven by a weakly coupled reservoir with short-lived memory
effects. In this limit, the Born−Markov approximation is valid
and has been successfully implemented in a variety of methods
for capturing accurate open system dynamics. However,
depending on parameters such as coupling strength and relative
relaxation and correlation time scales of the system and the
environment, this approximation can breakdown. The deviation
from Markovianity is often referred to as non-Markovianity and
is colloquially defined by the “backflow” of energy or
information from the environment into the system. The formal
definition and quantification of Markovianity versus non-
Markovianity of a system is an active field of research as
demonstrated by recent reviews and literature.759−762 The
importance of distinguishing between these regimes lies in this
“backflow” of information; if understood and controlled
correctly, it could aid in the preservation of important quantum
properties such as coherences and entanglement. In this section,
our aim is to summarize recent developments in the character-
ization of non-Markovianity and its potential applications.
While many measures of non-Markovianity have been

developed,758,763−769 there are two leading measures that are
most commonly used.762 The first is the RHP measure based on
the divisibility of dynamical maps proposed by Rivas, Huelga,
and Plenio in 2010.758 A process is Markovian if the linear, trace-
preserving, completely positive map, Λ(tj, ti), that connects the
density matrix at time ti to its evolved state at time tj, can be
decomposed as

Λ = Λ Λt t t t t t( , ) ( , ) ( , )j i j k k i (23)

where ti,tj, and tk are times such that ti ≤ tk ≤ tj. Since the
introduction of this measure, many related techniques have been
produced either as direct extensions of the RHP measure or
through similar means of derivation.770−772 The second leading
quantifier of non-Markovianity is referred to as the BLP
measure, introduced by Breuer, Laine, and Piilo. It quantifies the
non-Markovianity as the maximum rate of change of the trace
distance between pairs of evolving quantum statesD1 andD2 for
a given evolution time frame765

∫= | − |{ } t
D t D t tmax

1
2

d
d

Tr ( ) ( ) dD D

T

(0), (0)
0

1 21 2 (24)

where |...| is the square-root of the matrix norm, and the integral
runs from 0 to the final time of the evolution, T.765 For
Markovian evolution, the trace distance between two quantum
states D1(t) and D2(t) monotonically decreases as a function of
time.765 This implies that no matter how these two states are
initialized, they will become less distinguishable as they evolve.
Non-Markovian behavior is connected to intervals of increase in
this trace distance. Much like the RHP measure, many novel

measures have been produced either as extensions to the work of
BLP or through a similar means of derivation.773

An example of the BLPmeasure is shown in Figure 16a, where
the degree of non-Markovianity is shown as a function of
coupling strength for the Jaynes−Cummings model. This is a
commonly used benchmarking model consisting of a two-level
electronic system interacting with one environmental mode, as
shown schematically in the upper left corner.765,774 With
increasing coupling between the two-level system and the
environment, an increase in non-Markovianity is observed. The
gray dots, which lay in lines of fixed coupling strengths, represent
the BLP measure of non-Markovianity resulting from tracking
the distinguishability of two randomly chosen initial density
matrix states for a fixed interval of time. The black circles
represent the BLP measure resulting from tracking the
distinguishability of initially orthogonal density matrix states,
which produces the maximum amount of non-Markovianity.
Due to their physically motivated derivations and mathemat-

ical ease of use, the above two measures have been widely used
for the distinguishability between Markovianity and non-
Markovianity. This is a rich and active field of research with a
variety of other measures being developed, including recent
works that use the covariance matrix,776 relative entropies,777

optimal state pairs,778 and semiempirical methods.779,780

Figure 16. (a) Breuer−Laine−Piilo (BLP) measure of non-
Markovianity as a function of coupling strength in the Jaynes−
Cummings model, where the degree of non-Markovianity for two
randomly chosen initial states (gray dots) and for two orthogonal initial
states (black circles) are shown. Reproduced with permission from ref
765. Copyright 2009 by the American Physical Society. (b)
Concurrence of two noninteracting subsystems interacting with a
mutual environment versus the logarithm of the measure of non-
Markovianity. The entanglement between the two systems is increased
with the application of the control field. Adapted with permission from
ref 775. Copyright 2019 by the American Physical Society.
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While the formal definition and quantification of non-
Markovianity is still an active topic of research, the established
measures are being used to design and analyze both theoretical
and experimental set ups. One recent example is shown in Figure
16b, where several driving schemes were investigated as
protocols for entanglement between two subsystems that are
not directly coupled but have the potential to interact through a
mutual environment.775,781 While three different driving
schemes are considered in these works, Figure. 16b shows the
entanglement in terms of concurrence, , as a function of non-
Markovianity, , for the case in which only one subsystem is
being driven. It should be noted that in this case, the
concurrence depends on two elements of the density matrix
and can range from 0 for completely separable states to 1 for
maximally entangled states. Entanglement is shown to increase
with increasing non-Markovianity, with purple and black circles
representing the non-Markovianity measure given from
randomly and optimally chosen initial density matrix states,
respectively. This study demonstrates that entanglement can be
generated by exploiting the non-Markovianity in these systems
through invoking different driving schemes.781 This entangle-
ment generation protocol demonstrates how the measure of
non-Markovianity can be a guiding parameter when designing
optimal properties of open quantum systems for use in quantum
technologies including connected quantum sensors and scalable
quantum networks.
A critical component of the entanglement protocol scheme

presented above is how to model the dynamics of the open
quantum system. In the case of small systems, the dynamics can
be solved exactly; however, for themajority of systems of interest
this is rarely the case. This has spurred the development and
improvement of many methods to treat open system dynamics,
which will be discussed in the next section.

5.2. Methods in Non-Markovian Dynamics of Quantum
Systems

As demonstrated by the comprehensive review of non-
Markovian methods for open quantum systems in ref 782 and
the recent perspective on the definitions, measures, and
quantifiers of non-Markovianity in ref 762, handling non-
Markovian effects in open quantum systems is an active field of
research spanning mathematics, physics, chemistry, and
quantum engineering. While it has been a topic of interest for
many years, it has gained recent attention due to the
development of hybrid quantum technologies, including
transduction schemes between different realizations of qubits
and large-scale quantum network architectures. Since these
technologies often depend on optimal information transfer
fidelity and preserving coherence, the ability to treat quantum
systems in terms of their interactions with their surroundings is
critical. Here, we discuss the most commonly used methods of
treating open quantum systems in both the Markovian and non-
Markovian regimes. It should be noted that this section is meant
to serve as an overview of methodologies, highlighting the
variety of options and progress in the field. The references within
this section and the recent review articles782 are recommended
for the reader looking for more in-depth detail on the methods
presented.
5.2.1. Perturbative Approaches to Open Quantum

Systems. One of the most common methods of treating open
quantum systems is through the use of master equations, which
can be solved exactly in some cases and perturbatively in
others.754 This involves integrating out the environmental

degrees of freedom from the full density matrix to consider the
dynamics of the system through the reduced density matrix.783

In the Born−Markov approximation, the Gorini−Kossakow-
ski−Sudarshan−Lindblad formalism is a commonly used master
equation method for calculating dynamics, as it guarantees the
positivity of the system’s density matrix.784,785 Derived from
Kraus operators with a perturbative expansion to second-order,
the Lindblad equation is a first-order differential equation and is
given by
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where Ds is the system density matrix, H is the system
Hamiltonian, Ck are the k Lindbladian matrices defining
different dissipation or decoherence channels, γk are the positive
decay rates, and {,} is the anticommutator.754,784,785 Due to its
computational simplicity and guaranteed positivity, this has
been a widely used method of treating open quantum systems
weakly coupled to their environments. It should be noted that
the Lindbladianmatrices generally come from physical intuition,
experimental evidence, or theories such as Marcus theory. In
recent years, extensions to this approach such as the inclusion of
accurate fermionic statistics786,787 and non-Markovian effects
have been made.788,789 One example extension invoked a
systematic Keldysh diagrammatic perturbation theory technique
to derive Lindblad-like operators from higher order perturbative
terms to investigate a broader variety of dissipative processes.790

By including fourth-order diagrams that generated correlated
dissipation, this method was able to explain experimental gains
and losses in driven double quantum dot resonator systems.790

A second popular master equation approach under the Born−
Markov approximation is Redfield theory.791,792 While this
master equation does not inherently preserve the positivity of
the density matrix, work has been dedicated to making
adjustment to include positivity such as a coarse-grained
averaging technique.793 Similar to Lindblad’s theory, the
Redfield theory has also been modified, extended, and widely
used in applications such as energy transfer in photosynthetic
light-harvesting complexes.794−796

These two methods and their extensions are common and
straightforward choices for considering Markovian dynamics.
However, considering system−environment interactions be-
yond the Markovian regime leads to a plethora of other
options.754,797 For non-Markovian dynamics, there are several
master equation approaches that are extensions of the methods
used to treat Markovian dynamics.788,789,798−806 Among these
extensions are methods referred to as post-Markovian master
equations807−809 and semi-Markov methods,810 which are
computationally inexpensive but restricted to a somewhat
narrow range of interaction regimes.
More generally, non-Markovian master equations tend to be

divided into two main categories. There are time nonlocal
master equations, which involve the calculation of a memory
kernel, and time local equations, which do not explicitly treat the
system memory.811 Neglecting the inhomogeneity term and
assuming an initially factorized state of the density matrix,
DS+E(0) = DS(0) ⊗ DE(0), the simplified Nakajima−Zwanzig
equation, or generalized master equation, is a starting point for
many time nonlocal methods and is given by754,797,812−814

∫ τ τ τ=D t
t

t D
d ( )

d
d ( , ) ( )

t
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where τt( , ) is the memory kernel. With few exceptions, this
method is computationally intractable due to the complexity of
the kernel. Often for calculational purposes, the memory kernel
needs to be approximated through physical intuition or
perturbative expansion.815 Approximations of the memory
kernel lead to a risk of violating the positivity of the system
density matrix. An example of this violation can be seen when
the generalized master equation was perturbatively expanded to
second order and negative occupation numbers were observed
in a simple two-level system.754 Several methods have been
developed to work around this obstacle through careful
mathematical construction of the memory kernel.814,816 Other
methods have bypassed the perturbative approach entirely and
opted for numerical methods for computing the memory
kernel,817−823 including the use of surface hopping and
Ehrenfest dynamics824 and Mori theory.825−827

The Nakajima−Zwanzig method is often compared to a time-
local projection operator technique referred to as the time-
convolutionless or TCL method.754,828,829 The TCL master
equation is written as,

= +D t
t

t D t t D
d ( )

d
( ) ( ) ( ) (0)

(27)

where is the time local generator, is the inhomogeneity, and
and are projection operators that act on the full density

matrix to obtain the relevant (system) and irrelevant (environ-
ment) components, respectively.828 While this equation is exact,
the memory kernel and the inhomogeneity are computationally
challenging and eq 27 in its general form is impractical. To
overcome this computational challenge, this equation is often
solved by perturbatively expanding the time local kernel then
truncating at some order. However, the cost of truncating the
kernel is that the positivity of the density matrix is no longer
guaranteed, similar to the nonlocal form. Despite the risk of
losing positivity,830 the time-convolutionless form has been
successfully applied to many systems and processes of interest
including both linear and nonlinear spectroscopic predic-
tions.831 Similar to the Najakima−Zwanzig equation, numerical
approaches have been invoked to solve for the memory kernel in
this framework.832

5.2.2. Numerical Approaches to Open Quantum
Systems.While perturbative approaches offer sets of equations
for calculating the density matrix, numerically exact methods can
be implemented when an algebraic solution is not required. A
variety of methods have been developed that rely on systematic
convergence of numerical simulation, including methods based
on path integrals754,782,833 such as the quasi-adiabatic path
integral (QUAPI),834−836 path integral Monte Carlo
(PIMC),837,838 and noninteracting blip approximation.839,840

The QUAPI method employs the adiabatic reference to
determine the short-term system evolution operator and
integrate out the degrees of freedom from the bath. By
incorporation of nonadiabatic corrections through an influence
functional, the exact dynamics of a system along a given
adiabatic path can be described.While themethodwas originally
developed to describe low-dimensional systems coupled to a
bath of harmonic oscillators, it has been generalized and
employed extensively to treat open quantum system dynam-
ics,841,842 including those of charge qubits in complex environ-
ments.843−845 These path integral approaches have also been
combined to exploit their respective strengths to further
progress numerical simulation of open system dynamics.846

A complementary method that stems from Feynman’s path
integral approach is the hierarchical equations of motion
(HEOM) method.847−850 Due to its ability to calculate the
exact dynamics of a system linearly coupled to its environment,
HEOM has been successfully applied to a variety of systems of
chemical and physical interest. However, this method is
hindered by its requirement that the environment possess a
continuous spectral density. In recent years, many improve-
ments and extensions of the HEOM method have been
developed and successfully applied to a variety of sys-
tems,851−857,857 including photosynthetic light-harvesting com-
plexes.757,858−861 It should be noted that when the hierarchy is
truncated at low order, the HEOM method reduces to the
perturbative Nakajima−Zwanzig or time-convolutionless mas-
ter equation forms presented in the previous section.862

Monte Carlo wave function methods have been an effective
alternative to density matrix approaches for numerically
simulating the dynamics of Markovian open quantum
systems.863−865 These methods evolve Monte Carlo wave
functions of the system using a non-Hermitian Hamiltonian
while incorporating stochastic quantum jumps. In its dissipative
form, this method has been widely applied in quantum optics.866

The biggest challenge in generalizing this method to treat non-
Markovian dynamics is the emergence of negative quantum
jump probabilities.782 Using a combination of forward and
backward jumps enables capturing the backflow of energy or
information that is associated with non-Markovian behav-
ior.867,868 The positivity of the density matrix in the non-
Markovian quantum jump method has also been assessed,
noting that violations of positivity are associated with
singularities in the jump probabilities and therefore unphysical
results are prevented.869 This non-Markovian extension has
been successfully applied to observe population beatings in a
room temperature dimer system and excitonic energy transfer in
photosynthetic complexes.870,871

Some numerical methods for open system modeling have
been developed with specific systems in mind. One such
example is the cluster-expansion (CE) method, which has a
close relationship with Feynman diagrams and acts as a
systematic truncation of the Bogoliubov−Born−Green−Kirk-
wood−Yvon hierarchy for interacting systems. Due to its origins
being rooted in the numerical treatment of interacting systems,
the cluster-expansion method in a variety of forms has been
applied to the treatment of open systems interacting with spin
baths, including pure dephasing and the qubit decoherence
problem.872 Different flavors of the CE method have been
developed including the density matrix cluster-expansion
method,873−875 the linked cluster-expansion method,876 the
pair-correlation cluster-expansion method,877−879 and the
cluster-correlation expansion method.872,880,881 The cluster-
correlation expansion (CCE) method factorizes the bath spin
evolutions into cluster correlations and has been proven to bear
accurate results when converged.872,880

A very different alternative approach for the treatment of open
quantum systems is to use machine learning methods,882,883

including the use of restricted Boltzmann machines.650,884,885

Work in this field has focused on Markovian dynamics of open
quantum systems,886−889 with a recent extension that uses
parametrized quantum circuits to produce an open quantum
system algorithm based on Lindbladian dynamics.890 Along
these same lines, there has been some progress toward capturing
the dynamics of open quantum systems through adaptingmaster
equation approaches to be amenable to run on quantum
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devices.891−894 The major challenge that these methods face is
capturing nonunitary evolution of the system while relying on
unitary gates. Dilation methods must be used to incorporate the
important environmental degrees of freedom into a new
effective system such that the evolution remains unitary. While
early work could perform such dilations through use of the
Stinespring dilation theory,892,895 the computational scaling was
not favorable. Recent work used the Sz.-Nagy dilation theorem,
which reduces the scaling of the mapping from the dissipative
Lindbladian dynamics into a unitary form.896−899 Unitary
operations can be decomposed into a sequence of quantum
gates,900 which allowed for a two qubit calculation of a two-level
system in an amplitude damping channel.899 This work has
recently been extended to treat non-Markovian dynamics.901

While quantum algorithms for the treatment of open quantum
systems is still in its infancy, it shows promise for capturing
accurate dynamics in a variety of coupling regimes at a reduced
cost.

5.3. Emerging Directions in Environmentally Coupled
Quantum System Dynamics

Many of the recently developed open quantum systemsmethods
have proven to be useful in studying a variety of hybrid quantum
systems. While the above two sections classified methods as
either perturbative or numerical, many methods have been
developed at the intersection of these two categories to better
treat given systems of interest.902,903 In this section, we highlight
a few key recent examples.
As previously mentioned, NV centers in diamond or artificial

atom qubits in general exhibit complex environmental
interactions, and therefore, sources of decoherence are an
inherent and critical component of the system. The nitrogen
atom and corresponding vacancy together introduce a net
electronic spin, which interacts with an environment made up of
nitrogen nuclear spins and 13C spins as shown in Figure 17a.881

The CCEmethod mentioned in section 5.2 was generalized and
has been applied to treat a NV center in a diamond crystal.
Figure 17b,c,d depict different intensities of magnetic fields
ranging from having a large energy gap between the electron and
nuclear spins as compared to their hyperfine interaction to the
nearly resonant case, respectively.881 The orders of CCE from
2CCE to 5CCE are also compared, where 2CCE represents
including clusters with one bath spin and the NV center while
5CCE represents including clusters with four bath spins and the
NV center. Through these three figures, it was shown that the
5CCE provides little advantage over the 4CCE, and therefore
the 4CCE is sufficient for accurate calculations. It should be
noted in these methods that the spins outside of the cluster of
interest are considered to be frozen when considering the cluster

contribution. In the cases where the bath spins are as strongly
coupled to one another as they are to the system spin, the CCE
method is challenging to implement.904 However, this recent
work shows that the CCE method provides a numerically
tractable method of treating open quantum system dynamics in
the presence of spin baths, a useful tool for improving the
coherence lifetimes in NV centers, which show promise as spin
qubit candidates. Moreover, many experimental studies have
been committed to utilizing non-Markovian effects for the
control of spin qubits such as NV centers.905−907 One
experimental study showed that preparing different initial
superposition states for the nuclear spins allows control of the
electron spin dephasing and decoherence dynamics.905

Another important framework is the study of transport
through molecular junctions since it is an important step toward
the improvement of molecular electronics.908,909 Recent
literature has used a variety of open quantum system methods,
including master equations and Monte Carlo, to model both
thermal and charge transport in molecular junctions.803,910−912

Using these improved methods to capture dynamics, a more
accurate depiction of transport through molecular junction can
be found, facilitating the path toward improved efficiency.
Similar methods have also been used to model energy transfer in
molecular or biological systems,913 such as photosynthetic light-
harvesting complexes,822,914−917 as well as manufactured devices
such as molecular batteries.918 Figure 18a shows the 7 site
Fenna−Matthews−Olsen complex,917 a commonly studied
photosynthetic light-harvesting complex,919,920 while the
dynamics of sites 3, 5, and 6 are shown in panel b.822 Here,
two methods are compared to the exact solution obtained from
the HEOM approach.914 The first is Ehrenfest mean field theory

Figure 17. (a) Structure of a NV center diamond. The longitudinal relaxation process of the NV center is shown in terms of the survival probability of
the initial state of electron spin using different orders of CCE with a bath size of 50 under the magnetic field intensity (b) Bz = 1025.01 G, (c) Bz =
1024.99 G, or (d) Bz = 1024.97 G. Adapted with permission from ref 881. Copyright 2020 Elsevier.

Figure 18. (a) Seven site Fenna−Matthews−Olsen complex.
Reproduced with permission from ref 917. Copyright 2014 AIP
Publishing. (b) Populations of sites 3, 5, and 6 with an initial excitation
in the sixth site as it decays using HEOM (dots) and direct mean field
theory shown on the left and mean field generalized quantum master
equation shown on the right (lines). Adapted with permission from ref
822. Copyright 2019 American Institute of Physics.
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(MFT), which shows poor agreement with the exact dynamics.
The second is mean field generalized quantum master equation
(MF-GQME), which involves combiningmean field theory with
the generalized master equation and iteratively optimizing the
memory kernel. This method is an example of utilizing many
different open quantum system techniques, from perturbative to
numerical, to obtain an efficient and accurate model of an
important system.
A third area of application is in NISQ-based quantum

information processing, where controlling the system evolution
to minimize the detrimental effect of noise is critical for optimal
information communication. While dissipative dynamics
exclusively decreases quantum properties such as coherence,
the presence of non-Markovian effects can create recurrences of
coherences and other quantum properties. With the increased
interest in developing methods to treat non-Markovian
dynamics, there has also been interest in the exploitation of
non-Markovian dynamics for quantum control,921−925 entangle-
ment creation,775,781,926 and other quantum information
tasks.927,928 Similarly, work has been dedicated toward
controlling the degree of non-Markovianity of a qubit,929

considering the NV center in diamond as a sample system.905

Recent work considered a general weakly anharmonic ladder as
the system and partitioned the infinite set of oscillators into
primary and secondary baths. The primary bath is a set of two-
level systems that are strongly coupled to the system and could
be the source of quantum backflow, while the secondary bath is
weakly coupled and responsible for relaxation and dephasing.
The isolated system allows only for operations in the Lie algebra
group, SO(4), while system control through non-Markovian
effects enables the realization of all quantum operations in
SU(4). The error after optimization of one element in SU(4) in
terms of the spin−lattice, or T1, relaxation time is shown in
Figure 19a considering both a two-level system and a qudit.
Figure 19b in the top panel shows the optimized control
amplitudes through use of a ramping scheme shown in blue and
a fast oscillating control shown in red. The bottom panel shows
the amount of non-Markovianity using the determinant of the
volume of reachable system states as the measure. As discussed
in section 5.1, non-Markovianity is associated with an increase in
this volume. This work shows that the environment can act as a
resource for near-unitary quantum control of open quantum
systems.923

The above example highlights how the environment can be
used as a resource for controlling an arbitrary open quantum
system. More generally, the control and application of non-
Markovian effects are emerging as promising avenues for
quantum information purposes including the development of
engineered reservoirs and the improvement of quantum
algorithms and protocols. A recent example is the consideration
of the fidelity of generalized Pauli channels, which engineered
nonlocal noise to maintain prolonged entanglement in the
system.930 There also exists the potential to improve physical
quantum systems or quantum hardware. Methods such as neural
networks or the stochastic estimation of dynamical variables can
be used to parametrize experimental noise.931,932 Through use
of the perturbative methods discussed in previous sections,
improved noise models can be integrated into these parameter
estimation schemes to provide more realistic models and
improved parameters.
Various approaches for using the dissipative dynamics as a

computational resource have been explored under the umbrella
of “reservoir engineering”. During the early years of quantum

information, a common argument against the feasibility of
achieving quantum computational advantage was the notion
that noise processes would always conspire to decohere the
computational hardware. Reservoir engineering turns that idea
around by controlling the coupling between the computational
subspace and the dissipative reservoir. The basic approach
closely resembles the setting behind adiabatic quantum
computing: ensuring that the ground state of a given slowly
changing Hamiltonian is gapped from the first excited state
prevents noise processes from being able to excite, and hence
decohere, the system during a computation. Thus, adiabatic
quantum computing enables both computation and passive
error protection. Similarly, one can consider the eigenstates of
the dissipative superoperator. The “ground” steady-state
subspace toward which the nonunitary superoperator forces
the evolution of the computational system is naturally
“protected”. The goal of reservoir engineering is to find a way
to make this, usually trivial, subspace into something computa-
tionally useful.784,785,933−939 For instance, the dissipation
superoperator can be engineered such that the ground space is
of dimensionality higher than one. In such a subspace the
dissipation can protect coherent superpositions. The stronger
the engineered dissipation is, the more resilient the memory is
against other dissipative effects; thus the engineered bath
becomes a passive error correcting mechanism. Moreover,
computation can be performed by adiabatically modifying the
form of the dissipative operators.

Figure 19. (a) Error from the realization of an element of SU(4) on a
qudit and on a two-level system. (b) Optimized amplitudes with the
control with no ramp (red) and following a fixed ramp of ±500 MHz
over 2.5 ns at the beginning and end (blue) with the Liouville space
determinant of the system evolution. Reproduced with permission from
ref 923. Copyright 2015 Springer Nature.
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Non-Markovian memory effects have been exploited to
improve quantum algorithms and protocols.928 One recent
algorithmic development used non-Markovian memory effects
to improve the success probability of the refined Deutsch−Josza
algorithm implemented on NV center spin qubits.940 The
Deutsch−Jozsa algorithm is a quantum algorithm that aims to
determine if a function is constant or balanced.941 More
colloquially, this algorithm is used to determine whether a coin is
fake, implying the coin will produce either only heads or only
tails, or fair, implying there is an equal probability of it landing on
heads or tails. Combining non-Markovian memory effects with
the dynamical decoupling protection method942 results in a
substantial improvement in the algorithms’ success rate.940

These results demonstrated the ability for non-Markovian
memory effects to assist in quantum algorithm improvement.
Similar adaptations have been made to utilize non-Markovian
effects in quantum protocols, as mentioned briefly in the
entanglement generation protocol775,781 from section 5.1.
Another example is in superdense coding, where a sender can
transmit two bits of classical information to a receiver through a
single qubit by initially sharing an entangled state.674,943 Noise
and decoherence decrease the initial entanglement between the
sender and receiver, which in turn reduces the effects of the
protocol. The experimental application of nonlocal memory
effects through the use of non-Markovian noise has allowed
improvements to be made in both the efficiency and security of
quantum communication.926,944

The measures, methods, and applications discussed here are a
small sample of the vast field of open quantum systems. We
anticipate that the integration of the field of open quantum
systems with quantum chemistry, materials science, and
quantum information will aid in improved modeling of
correlated quantum matter.

6. CONCLUSIONS, OUTLOOK, AND FUTURE
DIRECTIONS

In this Review, we have assembled a comprehensive foundation
for those interested in the intersection of correlated quantum
matter and quantum information science. In sections 2 and 3, we
highlighted the strides that have been made in electronic
structure theory, using both wave function and density based
methods. Approaches, applications, and opportunities for
algorithmic advances to capture the correlated electronic
behavior in a variety of systems were discussed with a particular
emphasis on molecular and color center qubits and quantum
electrodynamical methods. Switching from classical approaches
to quantum, in section 4, we highlighted developments in
quantum algorithms as an alternative approach for reducing the
scaling of the N-body problem, with a focus on hybrid
algorithms. In section 5, we discussed the treatment of open
quantum systems and how invoking these methodologies with
respect to systems such as molecular and color center qubits has
the potential to improve their performance for use in quantum
technologies. Our Review highlights the interplay between
electronic structure, quantum electrodynamics, quantum
algorithms, open quantum systems, and novel quantum
technologies. Combining breakthroughs from these fields with
ideas from quantum computing has led to physical realizations
and improvements of a wide range of quantum technologies and
materials.

6.1. Outlook on Correlated Quantum Matter for Quantum
Information Science

Currently the discovery and development of materials and
molecules for quantum information science relies largely on
intuition-guided trial and error. Even in the limit of atomic
defects in semiconductors, conventional theoretical methods
cannot always capture quantum electronic properties and
dynamics at finite temperature. In the next few years, we
anticipate that the field will overcome this key hurdle in solid-
state quantum technologies for quantum networks and quantum
sensors by developing theoretical methods to model and predict
the properties of quantum defects quantitatively, identifying new
protocols to characterize complex and coherently coupled solid-
state quantum systems, and deploying them in practical
quantum repeater nodes to translate materials-level properties
into quantum devices. A success-story would be in transforming
the way coherent quantum emitters are identified, developed,
and engineered, to one in which numerical modeling and
computational screening precede complex and costly intuition-
guided experiments. Computational advantages of these
methods, tested against precision quantum spectroscopy of
emitters, could then be translated to broad classes of materials
for other quantum devices and quantum networks. The tight
discovery loop availed by the approach would allow the
community to, for instance, generate a local array of emitters
in a material, predict local and long-range properties such as
interemitter coherence lifetimes, make minute adjustments to
the spacing or arrangements of emitters, and engineer directly
the structure−function relationships that govern specific
quantum behaviors needed to enable scalable integration of
quantum emitters. Such integration is critical for solid-state
quantum technologies as additional qubits in quantum repeaters
will be needed for error correction, entanglement distillation,
and quantum repeater multiplexing. Further, by driving such
many-body systems out of equilibrium, new states of matter can
be created as recent results across nanophotonics and
condensed matter physics have shown. Nominally prohibited
in equilibrium, such novel states of matter feature unexpected
properties, including surprisingly long coherence times, allowing
for specific tailoring of quantummaterial and emitter properties.
We envision other intersections between predictions of new
quantum emitters, understanding their couplings and many-
body dynamics, and theoretical control schemes of impurity
arrays driven out of equilibrium via strain and phonons with the
goal of optimizing them for producing new quantum optical
states for quantum sensing, metrology, and quantum networking
related applications.
A related promising direction is in theory-guided design of

molecules with ideal ground and excited state electronic
structure to create optically addressable qubits. The optical
addressability in solid-state defect-based spins is dependent on a
number of key factors, including an excited state manifold that
allows for selective relaxation to a specific spin sublevel, an
optically addressable excitation, and the capacity for fluores-
cence. To create molecules with comparable properties to these
defect-based systems, the target molecules need to be designed
to have similar attributes. In spin 1 systems, generating the
optical excited state manifold requires consideration of the
relative energies of the excited state triplet and the excited state
singlet. Optical selection rules dictate that allowed optical
excitations from a triplet ground state will be to a triplet excited
state, which can then relax to a singlet state via intersystem
crossings mediated by spin−orbit coupling. Designing molec-
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ular qubits with the requisite excited state manifold is achievable
and, indeed, well worked out for octahedral and tetrahedral
systems in which the Tanabe−Sugano diagrams determine the
relationship between ligand field strength and optical excitation
energy. Identifying generalizable concepts for arbitrary corre-
lated molecular quantum matter to create modular molecular
qubits, such as macrocyclic ligands with varying conjugation and
axial ligands, is a rapidly growing area with close feedback
between theoretical predictions and experimental investigations.
From a theory perspective, these molecular qubit candidates

present an exciting challenge. Popular molecular candidates
considered consist of transition metal centers with large ligands,
as demonstrated by the examples shown in Figure 5. These
molecules tend to exhibit strong correlation, necessitating the
use of large active spaces. Systems such as these are what
continue to drive electronic structure theory development
toward the goal of accurate prediction of strong correlation at a
tractable computational cost. For instance, using the reduced
density matrix framework discussed in section 3.1, active spaces
as large as 42 electron in 40 orbitals7 or 120 electrons in 120
orbitals in the seniority zero space243 have successfully captured
strong correlation. Further development of both these and other
methods mentioned in sections 2 and 3 will allow for more
accurate treatment and therefore prediction of electronic
properties of nontrivial molecular complexes, which can in
turn be used toward the improvement of quantum technologies.
Theoretical predictions have revealed pathways toward

control of microscopic parameters in complex materials, as we
have discussed extensively in section 3.4. This includes mode-
selective enhancement, control of the amplitude and phase of
order parameters, and Floquet-driven symmetry protected
topological edge states. Utilizing such electromagnetically
engineered nonequilibrium phases necessitates a concerted
effort spanning theory and computation. Various groups are
constructing variational wave functions that extend Gaussian
states by including generalized canonical transformations
between the matter and light degrees of freedom. The key
advantage of such states compared to simple Gaussian states is
the presence of nonfactorizable correlations and the possibility
of describing states with strong entanglement between electrons
and phonons. These wave functions are different from the
commonly used canonical transformations, such as the polaron
or Lang−Firsov transformations, in that parameters of the
transformations are time dependent, which extends their regions
of applicability. The main questions that are being addressed
from these methods are enhancement of transient super-
conducting and charge density wave orders by parametric
driving of phonons. Further, we envision exciting newwork from
the community in identifying new states of quantum matter
under optical excitation, with a quantitative understanding of
microscopic quantum dynamics and collective excitations. This
is crucial to realize solid-state quantum information platforms
based on nonequilibrium phenomena and has so far been a
roadblock to technological exploitation of quantum matter.

6.2. Predicting Correlated Quantum Matter with New
Quantum Algorithms

For problems in QED and in particular in the field of strong
light−matter coupling, we foresee a wide range of applications
for computational quantum algorithms. As the simulation of the
Rabi model in strong coupling has demonstrated,945,946 such
quantum simulations are now within reach. By going beyond the
two-level limitation of the Rabi model, some of the still open

questions for chemical systems in optical cavities can be
targeted. Questions such as the changes in transition state of
chemical reactions under strong light−matter coupling and
cavity-induced superconductivity are still unsolved. These
light−matter correlated systems, which include electronic,
nuclear, and photonic degrees of freedom, necessitate
algorithmic advances on how to efficiently describe the complex
interplay of these interactions. Ideas from the electron−phonon
mapping947 can also be used to map electron−photon problems
to NISQ devices.
The last two decades have seen dramatic computational

advances in electronic structure theory driven by software
development that has exploited massive-parallelization available
today on large supercomputers. Most of these highly
sophisticated software packages in material science and
quantum chemistry still remain poorly interfaced with the
frameworks used to access NISQ devices. On the forefront of
these developments are highly flexible python-based quantum
chemistry packages such as PSI4948 and PySCF20 that have
already led to successful implementations of hybrid quantum−
classical algorithms for molecular systems using VQE. Over-
coming the barriers between the optimized and powerful general
software packages in material science and general quantum
programming languages will drive the development of more
advanced hybrid quantum−classical algorithms for applications
of extended systems.
We highlight that developing quantum algorithms and useful

implementations thereof, which maximize the impact of
quantum and classical computing capabilities, requires a diverse
set of tools. One such tool is scalable ab initio codes that
compute the parameters for second-quantized quantum
algorithms. Another is quantum compilers that can translate
algorithms for different physical realizations of quantum
computers. A third tool is quantum device simulators, which
can be used to simulate the behavior of algorithms on quantum
computers, to complement a physical quantum device, or to
simulate the noise sensitivity of a quantum computing
technology or algorithm.
So far, the wide-range of nonequilibrium dynamics of

quantum systems on quantum devices remains largely unex-
plored. As has been discussed in this Review, general methods to
accurately describe nonequilibrium many-body systems remain
limited. While there exists a variety of methods that are in
principle capable of describing larger systems, such as TDDFT,
in practice these methods often use the adiabatic approximation,
and therefore are limited to states close to the ground state. On
the other hand, methods based on many-body perturbation
theory, such as nonequilibrium GW, are intrinsically computa-
tionally complex, and efficient approaches for modeling larger
systems have only recently been developed. This wide gap opens
many possibilities for quantum devices, due to their scalability
and capability to accurately describe the electronic structure.
Among the exotic effects that nonequilibrium dynamics of
quantum systems promises to reveal is the recently demon-
strated light-induced superconductivity. To properly describe
these systems, not only is the scaling of current architectures in
terms of qubit size and noise reduction necessary, but also ideas
of hybrid quantum−classical algorithms have to be transferred
to the time domain.
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6.3. Open Quantum Systems and Quantum Transport on
NISQ Devices

Modeling excitonic energy transport is another example where
we anticipate that quantum algorithmic development will make
rapid progress toward efficiently using quantum resources. Here,
quantum transport, as seen in molecular complexes and
correlated condensed matter, can arise from intricate, multibody
interactions on partially ordered landscapes. In these cases,
energetic disorder tends to localize particles and to inhibit
coherent transport, while noise destroys coherence and
enhances transport. However, too much noise and decoherence
drives the system to a regime in which transport is suppressed
resulting in an “optimal spot”, where the interplay between static
and dynamic disorder optimizes energy transport. One of the
current key obstacles in understanding this many-body energy
transport dynamics is the difficulty of simulating quantum
systems with more than a few dozen particles or sites. NISQ
information processors hold the promise of being able to
simulate energy transport in quantum systems with 50−100
particles or sites, which should allow the direct simulation of
quantum energy transport in catalytic systems. While variational
methods are crucial to characterizing the individual energy
eigenstates of complex quantum systems in the vicinity of the
ground state, simulating quantum energy transport, by
definition, requires an approach that goes beyond variational
quantum eigensolvers, as one must take into account dynamic
processes involving multiple energy eigenstates. In addition, we
expect that methods of quantum simulation of complex many-
body systems on NISQs will require special attention to the
modeling of noise and decoherence. Though environmental
noise from the thermal vibrational background can in principle
be simulated using conventional open quantum system
simulation methods, the NISQ processor will add its own
sources of noise, which in general will not match up with the
actual effects of noise from the physical environment. Carefully
designing the quantum simulation could allow at least part of the
hardware noise in the quantum simulator to mimic the effects of
environmental noise. This could extend the applicability of noisy
quantum simulators to simulating noisy quantum systems for
sufficiently long time periods that they can encompass crucial
and currently poorly understood aspects of quantum energy
transport in multiparticle molecular complexes.
The trend toward increased interest in novel techniques for

quantum simulation of open quantum systems in order to better
understand and tune the effects of noise and errors is likely to
continue. One direction is to directly adapt classical techniques,
such as propagation schemes,949 to superconducting quantum
processors with pulse-level control.950 Current NISQ super-
conducting quantum information processors consist of qubits
coupled via local couplings and via superconducting cavities.
TheHamiltonian of the information processor can be controlled
by on-chip static fields, and its dynamics is controlled by the
application of time-dependent microwave pulses. The conven-
tional method for performing quantum simulations using such
devices is to divide up the action of the Hamiltonian to be
simulated into small time steps and to simulate each small time
step using finite quantum logic operations. We anticipate that
the quantum simulation can in principle be made significantly
more efficient by using Hamiltonian mapping techniques, in
which a carefully designed time-dependent Hamiltonian is used
to simulate the quantum dynamics.
Catalyzed by recent discoveries in quantum computation,

research has focused on using quantum resources to describe

open quantum systems.890,894,899,901 A new quantum algorithm
for such open systems, one that scales favorably on quantum
devices, would have far reaching impact beyond the quantum
computing community. Recently presented approaches invoke
the Sz.-Nagy dilation theorem for either a single Lindbladian
trajectory899 or an ensemble of trajectories901 to treat open
quantum systems in a wide variety of complex environments.
With these resulting methods, the time evolution can be
simulated on a quantum device with the potential for
exponential improvements in simulation time and storage over
classical algorithms, offering a more efficient alternative
especially with large, correlated systems. We anticipate further
algorithmic advances in the treatment of both Markovian and
non-Markovian dynamics on quantum computers, as well as
extensive application to systems of chemical and material
interest.
We hope our timely presentation of breakthroughs, advances,

and developments in the direction of quantum information and
algorithms for correlated quantum matter resonate with readers
interested in this intersection. From our perspective, the field is
rapidly approaching algorithms with nonexponential complexity
to address the grand challenge of the strongly correlated
problem. Looking ahead at the vibrant intersection of quantum
information science and algorithms for correlated quantum
matter, we envision seminal advances in predicting many-body
quantum states, describing excitonic quantum matter and large-
scale entangled states, a better understanding of high-temper-
ature superconductivity, and quantifying open quantum system
dynamics.
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GLOSSARY

Ck Lindbladian operator corresponding to kth
channel

E energy
EHF Hartree−Fock energy
Ecorr correlation energy
Eexact exact energy
GW Expansion of electron self-energy in terms of the

Coulomb operatorW and single particle Green’s
function G

Ne number of electrons
Norb number of orbitals
SO special orthogonal group
SU special unitary group
T2 partial 3-body N-representability condition
ΔSCF delta self-consistent field
Λ dynamical map
Ψ N-body wave function
Σ electron self-energy
χR
(1) response function
γk decay rate corresponding to Lindbladian channel

Ck
Ĥ Hamiltonian
T̂ excitation operator
a ̂ annihilation operator
a†̂ creation operator
D electric displacement
R electronic dipole operator
r position vector

concurrence
t( ) inhomogeneity term

memory kernel
measure of non-Markovianity

and projection operators
τ time lag
1D 1-electron reduced density matrix
2D 2-electron reduced density matrix
2G particle-hole reduced density matrix
2K 2-body Hamiltonian
2Q 2-hole reduced density matrix
ND N-electron reduced density matrix
i imaginary number −1
n electronic density
ni occupation number of ith orbital
vo(r) static external potential
vxc(r) exchange-correlation potential
ACBN0 Agapito Curtarolo and Buongiorno Nardelli

pseudohybrid Hubbard density functional
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ACSE Antihermitian contracted Schrödinger equation

B3LYP
Becke, 3-parameter, Lee−Yang−Parr hybrid
functional

BCH Baker−Campbell−Hausdorff
BLP Breuer−Laine−Piilo measure of non-Marko-

vianity
CAS complete active space
CASPT2 complete active space perturbation theory to

second order
CASPT complete active space perturbation theory
CASSCF complete active space self-consistent field
CC coupled cluster
CCE cluster correlation expansion
CCS coupled cluster singles
CCSD coupled cluster singles doubles
CCSDT coupled cluster singles doubles triples
CDW charge density wave
CE cluster expansion
CI configuration interaction
CIS configuration interaction singles
CISD configuration interaction singles doubles
CISDT configuration interaction singles doubles triples
DFT density functional theory
DMET density matrix embedding theory
DMFT dynamical mean field theory
DOCI doubly occupied configuration interaction
FCI full configuration interaction
FCP Franck−Condon profile
GAS generalized active space
GGA generalized-gradient approximation
GME generalized master equation
GPC generalized Pauli constraints
hBN hexagonal boron nitride
HEOM hierarchical equations of motion
HF Hartree−Fock
HOMO highest-occupied molecular orbital
HSE Heyd−Scuseria−Ernzerhof functional
LAS localized active space
LDA local density approximation
LED light-emitting diode
LR linear response
LUMO lowest-unoccupied molecular orbital
MC-SCF multiconfigurational self-consistent field
MFT mean field theory
MFT-GQME mean field theory generalized quantum master

equation
MP2 Møller−Plesset perturbation theory to second

order
MPT Møller−Plesset perturbation theory
NISQ noisy intermediate-scale quantum
NO natural orbital
NV nitrogen-vacancy
OQS open quantum systems
PBE Perdew, Burke, and Ernzerhof functional
PIMC path integral Monte Carlo
QCNN quantum convolutional neural networks
QEDFT quantum electrodynamical density-functional

theory
QPEA quantum phase estimation algorithms
QUAPI quasi-adiabatic path integral
RAS restricted active space
RASPT2 restricted active space perturbation theory to

second order

RDM reduced density matrix
RDMFT reduced density matrix functional theory
RHP Rivas, Huelga, Plenio measure of non-Marko-

vianity
RI resolution of identity
RPA random-phase approximation
SC superconducting
SCAN strongly constrained and appropriately normed

semilocal density functional
SDP semidefinite programming
SiC silicon carbide
SiV silicon vacancy
STO-6G Pople Slater-type orbital 6-Gaussian basis set
TCL time convolutionless master equation
TDDFT time-dependent density functional theory
TDRDMFT time-dependent reduced density matrix func-

tional theory
UCC unitary coupled cluster
v2RDM variational 2-electron reduced density matrix

method
VQE variational quantum eigensolver
YAG yttrium ion garnet
ZPL zero-phonon line
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Bielejec, E.; Markham, M.; Loncǎr, M. Spectral Alignment of Single-
Photon Emitters in Diamond using Strain Gradient. Phys. Rev. Appl.
2018, 10, No. 024050.
(432) Maity, S.; Shao, L.; Bogdanovic,́ S.; Meesala, S.; Sohn, Y.-I.;
Sinclair, N.; Pingault, B.; Chalupnik, M.; Chia, C.; Zheng, L.; et al.
Coherent Acoustic Control of a Single Silicon Vacancy Spin in
Diamond. Nat. Commun. 2020, 11, 193.
(433) Wan, N. H.; Lu, T.-J.; Chen, K. C.; Walsh, M. P.; Trusheim, M.
E.; De Santis, L.; Bersin, E. A.; Harris, I. B.; Mouradian, S. L.; Christen,
I. R.; et al. Large-Scale Integration of Artificial Atoms in Hybrid
Photonic Circuits. Nature 2020, 583, 226−231.

(434) Machielse, B.; Bogdanovic, S.; Meesala, S.; Gauthier, S.; Burek,
M. J.; Joe, G.; Chalupnik, M.; Sohn, Y. I.; Holzgrafe, J.; Evans, R. E.;
et al. Quantum Interference of Electromechanically Stabilized Emitters
in Nanophotonic Devices. Phys. Rev. X 2019, 9, No. 031022.
(435) Sohn, Y.-I.; Meesala, S.; Pingault, B.; Atikian, H. A.; Holzgrafe,
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Á.; Leventis, A.; Fallon, K. J.; Coulthard, H.; Bossanyi, D. G.; Georgiou,
K.; Anthony J. Petty, I.; et al. Manipulating Molecules with Strong
Coupling: Harvesting Triplet Excitons in Organic Exciton Micro-
cavities. Chemical Science 2020, 11, 343−354.
(580) DelPo, C. A.; Kudisch, B.; Park, K. H.; Khan, S.-U.-Z.; Fassioli,
F.; Fausti, D.; Rand, B. P.; Scholes, G. D. Polariton Transitions in
Femtosecond Transient Absorption Studies of Ultrastrong Light−
Molecule Coupling. J. Phys. Chem. Lett. 2020, 11, 2667−2674.
(581) Mueller, N. S.; Okamura, Y.; Vieira, B. G. M.; Juergensen, S.;
Lange, H.; Barros, E. B.; Schulz, F.; Reich, S. Deep Strong Light−Matter

Chemical Reviews pubs.acs.org/CR Review

https://dx.doi.org/10.1021/acs.chemrev.0c00620
Chem. Rev. XXXX, XXX, XXX−XXX

AY

https://dx.doi.org/10.1103/PhysRevB.78.085125
https://dx.doi.org/10.1103/PhysRevB.78.085125
https://dx.doi.org/10.1103/PhysRevB.81.115105
https://dx.doi.org/10.1103/PhysRevB.81.115105
https://dx.doi.org/10.1021/ct500958p
https://dx.doi.org/10.1016/j.cpc.2011.12.006
https://dx.doi.org/10.1016/j.cpc.2011.12.006
https://dx.doi.org/10.1016/j.cpc.2011.12.006
https://dx.doi.org/10.1103/PhysRevLett.113.076402
https://dx.doi.org/10.1103/PhysRevLett.113.076402
https://dx.doi.org/10.1021/acs.jctc.7b00770
https://dx.doi.org/10.1021/acs.jctc.7b00770
https://dx.doi.org/10.1103/PhysRevB.98.075107
https://dx.doi.org/10.1103/PhysRevB.98.075107
https://dx.doi.org/10.1103/PhysRevB.91.235302
https://dx.doi.org/10.1103/PhysRevB.91.235302
https://dx.doi.org/10.1103/PhysRevLett.97.216405
https://dx.doi.org/10.1103/PhysRevLett.97.216405
https://dx.doi.org/10.1021/ct5003658
https://dx.doi.org/10.1021/ct5003658
https://dx.doi.org/10.1021/acs.jctc.5b00453
https://dx.doi.org/10.1021/acs.jctc.5b00453
https://dx.doi.org/10.1021/acs.jctc.6b00163
https://dx.doi.org/10.1021/acs.jctc.6b00163
https://dx.doi.org/10.1021/acs.jctc.6b00163
https://dx.doi.org/10.1039/C7CS00049A
https://dx.doi.org/10.1039/C7CS00049A
https://dx.doi.org/10.1039/C7CS00049A
https://dx.doi.org/10.1021/acs.jctc.9b00326
https://dx.doi.org/10.1021/acs.jctc.9b00326
https://dx.doi.org/10.1063/1.5123290
https://dx.doi.org/10.1063/1.5123290
https://dx.doi.org/10.1063/1.5123290
https://dx.doi.org/10.1021/acs.nanolett.8b03715
https://dx.doi.org/10.1021/acs.nanolett.8b03715
https://dx.doi.org/10.1038/s41467-020-15339-0
https://dx.doi.org/10.1038/s41467-020-15339-0
https://dx.doi.org/10.1038/s41467-020-15339-0
https://dx.doi.org/10.1103/PhysRevLett.122.186402
https://dx.doi.org/10.1103/PhysRevLett.122.186402
https://dx.doi.org/10.1103/PhysRevLett.122.186402
https://dx.doi.org/10.1021/acs.jctc.8b00728
https://dx.doi.org/10.1021/acs.jctc.8b00728
https://dx.doi.org/10.1021/acs.jctc.8b00728
https://dx.doi.org/10.1038/nmat5017
https://dx.doi.org/10.1038/nmat5017
https://dx.doi.org/10.1021/acs.nanolett.9b00518
https://dx.doi.org/10.1021/acs.nanolett.9b00518
https://dx.doi.org/10.1002/adma.201806603
https://dx.doi.org/10.1002/adma.201806603
https://dx.doi.org/10.1021/acs.accounts.6b00295
https://dx.doi.org/10.1021/acs.accounts.6b00295
https://dx.doi.org/10.1021/acsphotonics.7b00680
https://dx.doi.org/10.1021/acsphotonics.7b00680
https://dx.doi.org/10.1038/s41570-018-0118
https://dx.doi.org/10.1038/s41570-018-0118
https://dx.doi.org/10.1039/C8CS00193F
https://dx.doi.org/10.1039/C8CS00193F
https://dx.doi.org/10.1103/RevModPhys.91.025005
https://dx.doi.org/10.1038/s42254-018-0006-2
https://dx.doi.org/10.1063/1.5136320
https://dx.doi.org/10.1063/1.5136320
https://dx.doi.org/10.1002/qute.201900140
https://dx.doi.org/10.1002/qute.201900140
https://dx.doi.org/10.1038/s42254-020-0224-2
https://dx.doi.org/10.1038/s42254-020-0224-2
https://dx.doi.org/10.1073/pnas.1914713117
https://dx.doi.org/10.1126/science.aah5243
https://dx.doi.org/10.1126/science.aau7742
https://dx.doi.org/10.1126/science.aau7742
https://dx.doi.org/10.1002/anie.201107033
https://dx.doi.org/10.1126/sciadv.aas9552
https://dx.doi.org/10.1126/sciadv.aas9552
https://dx.doi.org/10.1038/s41377-019-0180-8
https://dx.doi.org/10.1038/s41565-019-0620-x
https://dx.doi.org/10.1038/s41565-019-0620-x
https://dx.doi.org/10.1126/sciadv.aax4482
https://dx.doi.org/10.1126/sciadv.aax4482
https://dx.doi.org/10.1039/C9SC04950A
https://dx.doi.org/10.1039/C9SC04950A
https://dx.doi.org/10.1039/C9SC04950A
https://dx.doi.org/10.1021/acs.jpclett.0c00247
https://dx.doi.org/10.1021/acs.jpclett.0c00247
https://dx.doi.org/10.1021/acs.jpclett.0c00247
https://dx.doi.org/10.1038/s41586-020-2508-1
pubs.acs.org/CR?ref=pdf
https://dx.doi.org/10.1021/acs.chemrev.0c00620?ref=pdf


Coupling in Plasmonic Nanoparticle Crystals. Nature 2020, 583, 780−
784.
(582) Xiang, B.; Ribeiro, R. F.; Du, M.; Chen, L.; Yang, Z.; Wang, J.;
Yuen-Zhou, J.; Xiong, W. Intermolecular Vibrational Energy Transfer
Enabled by Microcavity Strong Light−Matter Coupling. Science 2020,
368, 665−667.
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(922) Pachoń, L. A.; Brumer, P. Mechanisms in Environmentally
Assisted One-Photon Phase Control. J. Chem. Phys. 2013, 139, 164123.
(923) Reich, D. M.; Katz, N.; Koch, C. P. Exploiting Non-
Markovianity for Quantum Control. Sci. Rep. 2015, 5, 12430.
(924) Poggi, P. M.; Lombardo, F. C.; Wisniacki, D. A. Driving-
Induced Amplification of Non-Markovianity in Open Quantum
Systems Evolution. EPL 2017, 118, 20005.

Chemical Reviews pubs.acs.org/CR Review

https://dx.doi.org/10.1021/acs.chemrev.0c00620
Chem. Rev. XXXX, XXX, XXX−XXX

BG

https://dx.doi.org/10.1016/j.aop.2019.168063
https://dx.doi.org/10.1016/j.aop.2019.168063
https://dx.doi.org/10.1103/PhysRevLett.123.240602
https://dx.doi.org/10.1103/PhysRevLett.123.240602
https://dx.doi.org/10.1103/PhysRevLett.123.240602
https://dx.doi.org/10.1103/PhysRevLett.122.160401
https://dx.doi.org/10.1103/PhysRevLett.122.160401
https://dx.doi.org/10.1038/s41567-019-0545-1
https://dx.doi.org/10.1038/s41567-019-0545-1
https://dx.doi.org/10.1103/PhysRevB.99.214306
https://dx.doi.org/10.1103/PhysRevB.99.214306
https://dx.doi.org/10.1103/PhysRevLett.122.250501
https://dx.doi.org/10.1103/PhysRevLett.122.250501
https://dx.doi.org/10.1063/1.5097158
https://dx.doi.org/10.1063/1.5097158
https://dx.doi.org/10.1063/1.5097158
https://dx.doi.org/10.1103/PhysRevLett.122.250503
https://dx.doi.org/10.1103/PhysRevLett.122.250503
https://arxiv.org/abs/2001.02552
https://dx.doi.org/10.1103/PhysRevA.83.062317
https://dx.doi.org/10.1103/PhysRevA.83.062317
https://dx.doi.org/10.1103/PhysRevA.91.062308
https://dx.doi.org/10.1103/PhysRevA.91.062308
https://dx.doi.org/10.1038/srep30727
https://dx.doi.org/10.1038/srep30727
https://dx.doi.org/10.1038/s41534-019-0235-y
https://dx.doi.org/10.1038/s41534-019-0235-y
https://dx.doi.org/10.1038/s41534-019-0235-y
https://dx.doi.org/10.2307/2032342
https://dx.doi.org/10.1002/zamm.19720520821
https://dx.doi.org/10.1002/zamm.19720520821
https://dx.doi.org/10.1002/zamm.19720520821
https://dx.doi.org/10.1216/RMJ-2014-44-1-203
https://dx.doi.org/10.1216/RMJ-2014-44-1-203
https://dx.doi.org/10.1038/s41598-020-60321-x
https://dx.doi.org/10.1038/s41598-020-60321-x
https://dx.doi.org/10.1103/PhysRevLett.111.130504
https://arxiv.org/abs/2005.00029
https://arxiv.org/abs/2005.00029
https://dx.doi.org/10.1103/PhysRevLett.105.050404
https://dx.doi.org/10.1103/PhysRevLett.105.050404
https://dx.doi.org/10.1063/1.3687342
https://dx.doi.org/10.1063/1.3687342
https://dx.doi.org/10.1063/1.3687342
https://dx.doi.org/10.1103/PhysRevB.87.115122
https://dx.doi.org/10.1103/PhysRevB.87.115122
https://dx.doi.org/10.1103/PhysRevLett.121.060401
https://dx.doi.org/10.1016/j.scib.2018.02.017
https://dx.doi.org/10.1016/j.scib.2018.02.017
https://dx.doi.org/10.1103/PhysRevB.98.064306
https://dx.doi.org/10.1103/PhysRevB.98.064306
https://dx.doi.org/10.1016/S0370-1573(02)00633-6
https://dx.doi.org/10.1016/S0370-1573(02)00633-6
https://dx.doi.org/10.1039/C6TC03268K
https://dx.doi.org/10.1039/C6TC03268K
https://dx.doi.org/10.1063/1.5089885
https://dx.doi.org/10.1063/1.5089885
https://dx.doi.org/10.1063/1.5100142
https://dx.doi.org/10.1063/1.5100142
https://dx.doi.org/10.1063/1.5096244
https://dx.doi.org/10.1063/1.5096244
https://dx.doi.org/10.1063/1.5096287
https://dx.doi.org/10.1063/1.5096287
https://dx.doi.org/10.1063/1.5096287
https://dx.doi.org/10.1073/pnas.0908989106
https://dx.doi.org/10.1073/pnas.0908989106
https://dx.doi.org/10.1073/pnas.0908989106
https://dx.doi.org/10.1063/1.3002335
https://dx.doi.org/10.1063/1.3002335
https://dx.doi.org/10.1063/1.3142485
https://dx.doi.org/10.1063/1.3142485
https://dx.doi.org/10.1063/1.3142485
https://dx.doi.org/10.1063/1.4856795
https://dx.doi.org/10.1063/1.4856795
https://dx.doi.org/10.1063/1.4856795
https://dx.doi.org/10.1063/1.5096772
https://dx.doi.org/10.1063/1.5096772
https://dx.doi.org/10.1038/nature05678
https://dx.doi.org/10.1038/nature05678
https://dx.doi.org/10.1038/nature05678
https://dx.doi.org/10.1073/pnas.1005484107
https://dx.doi.org/10.1073/pnas.1005484107
https://dx.doi.org/10.1073/pnas.1005484107
https://dx.doi.org/10.1103/PhysRevLett.102.090401
https://dx.doi.org/10.1103/PhysRevLett.102.090401
https://dx.doi.org/10.1063/1.4825358
https://dx.doi.org/10.1063/1.4825358
https://dx.doi.org/10.1038/srep12430
https://dx.doi.org/10.1038/srep12430
https://dx.doi.org/10.1209/0295-5075/118/20005
https://dx.doi.org/10.1209/0295-5075/118/20005
https://dx.doi.org/10.1209/0295-5075/118/20005
pubs.acs.org/CR?ref=pdf
https://dx.doi.org/10.1021/acs.chemrev.0c00620?ref=pdf


(925) Ho, L. B.; Matsuzaki, Y.; Matsuzaki, M.; Kondo, Y. Realization
of Controllable Open System with NMR. New J. Phys. 2019, 21,
No. 093008.
(926) Liu, B.-H.; Hu, X.-M.; Huang, Y.-F.; Li, C.-F.; Guo, G.-C.;
Karlsson, A.; Laine, E.-M.; Maniscalco, S.; Macchiavello, C.; Piilo, J.
Efficient Superdense Coding in the Presence of non-Markovian Noise.
EPL 2016, 114, 10005.
(927) Laine, E.-M.; Breuer, H.-P.; Piilo, J. Nonlocal Memory Effects
Allow Perfect Teleportation with Mixed States. Sci. Rep. 2014, 4, 4620.
(928) Li, C.-F.; Guo, G.-C.; Piilo, J. Non-Markovian Quantum
Dynamics: What is it Good For? EPL 2019, 128, 30001.
(929) Haase, J. F.; Smirne, A.; Huelga, S. F. Non-Monotonic
Population and Coherence Evolution in Markovian Open-System
Dynamics.Advances in Open Systems and Fundamental Tests of Quantum
Mechanics; Springer: Cham, 2019; pp 41−57.
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