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Quantized thermoelectric Hall effect induces giant
power factor in a topological semimetal
Fei Han 1,9✉, Nina Andrejevic2,9, Thanh Nguyen1,9, Vladyslav Kozii 3,9, Quynh T. Nguyen1,3, Tom Hogan4,

Zhiwei Ding 2, Ricardo Pablo-Pedro1, Shreya Parjan5, Brian Skinner 3, Ahmet Alatas6, Ercan Alp6,

Songxue Chi 7, Jaime Fernandez-Baca 7, Shengxi Huang 8, Liang Fu3✉ & Mingda Li 1✉

Thermoelectrics are promising by directly generating electricity from waste heat. However,

(sub-)room-temperature thermoelectrics have been a long-standing challenge due to van-

ishing electronic entropy at low temperatures. Topological materials offer a new avenue for

energy harvesting applications. Recent theories predicted that topological semimetals at the

quantum limit can lead to a large, non-saturating thermopower and a quantized thermo-

electric Hall conductivity approaching a universal value. Here, we experimentally demon-

strate the non-saturating thermopower and quantized thermoelectric Hall effect in the

topological Weyl semimetal (WSM) tantalum phosphide (TaP). An ultrahigh longitudinal

thermopower Sxx � 1:1 ´ 103 μVK�1 and giant power factor � 525 μWcm�1 K�2 are

observed at ~40 K, which is largely attributed to the quantized thermoelectric Hall effect. Our

work highlights the unique quantized thermoelectric Hall effect realized in a WSM toward

low-temperature energy harvesting applications.
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Over two-thirds of global energy production is rejected as
waste heat. Thermoelectrics are attractive by directly
converting waste heat into electricity without moving

parts. The efficiency of thermoelectric energy conversion is an
increasing function of a dimensionless quantity zT ¼ σS2T=κ,
where σ, S, and κ denote the electrical conductivity, thermopower,
and total thermal conductivity, respectively1. Conventional ther-
moelectrics largely focus on tuning the thermal and electrical
conductivities. Many efforts, such as lowering dimensionality2,
microstructuring3,4, and nanostructuring5,6, share the same
principle: by increasing the scattering of major heat carriers of
long mean free-path phonons without affecting the short mean
free-path electrons, a level of independent tunability between
electrical conductivity σ and thermal conductivity κ can be
achieved, such as the phonon-glass electron-crystal state7. How-
ever, less attention was paid to improve the thermopower S, even
though the S2 dependence in zT makes such improvement
appealing. Moreover, thermopower S is proportional to the
entropy per carrier and is therefore suppressed at reduced tem-
perature8. For this reason, current thermoelectrics are generally
effective only at elevated temperatures and there is a pressing
need for thermoelectrics that work efficiently at room tempera-
ture and below. Filling this need requires new materials that can
exhibit large electronic entropy at low temperatures while
maintaining significant electrical conductivity.

One approach to creating large electronic entropy is band-
structure engineering through low carrier density, partially filled
carrier pockets9; a similar principle has also been applied to
semimetals, such as Bi10, graphite11, and most recently Weyl
semimetals (WSMs), to explore large entropy at low carrier
density12–14. However, the electrical conductivity is thereby
reduced. Magnetic field offers an additional incentive to drama-
tically increase the entropy, as the linear field dependence of the
density of states (DOS) enables unbounded, macroscopic number
of states in each Landau level (LL), yet in conventional thermo-
electrics, charge carriers will be localized at high B-field due to the
cyclotron motion, still resulting in low conductivity. Conse-
quently, increasing power factor � σS2ð Þ creates a significant
challenge as it requires optimization of both σ and S under
conflicting conditions.

The recent development of topological materials15,16, including
topological WSMs17, offers a new pathway to surpass conven-
tional thermoelectrics that relies on the topological protection of
electronic states18,19. It is particularly worthy to note that the
WSM system has a unique n= 0 LL, which has a highly unusual,
energy-independent DOS gðn ¼ 0Þ ¼ Nf Be=4π

2�h2vF increasing
linearly with B, and therefore can create huge electronic entropy.
More importantly, the system remains gapless under high field,
thanks to the topological nature of Weyl nodes. Consequently,
recent theories predicted a non-saturating thermopower20 and
quantized thermoelectric Hall conductivity at the quantum
limit21, where electrons and holes contribute additively to high
thermoelectric performance without experiencing localization.

In this work, we carry out high-precision thermoelectric
measurements using a centimeter-sized crystal WSM TaP
(Fig. 1a, b and Supplementary Notes 1 and 2). The Fermi level is
fine-tuned through the synthesis procedure to approach the n= 0
LL near the W2 Weyl node (Fig. 1g). In this system, giant, non-
saturating longitudinal thermopower Sxx is observed, which
exhibits linear dependence with B-field without saturation. In
addition, the signature of the quantized thermoelectric Hall
conductivity is observed, where the low-temperature, high-field
thermoelectric Hall conductivity αxy � ρ�1S½ �xy approaches a
universal curve determined by number of fermion flavors, Fermi
velocity, and universal constants. Moreover, evidence of

Wiedemann–Franz (WF) law violation further indicates a
breakdown of quasiparticle behaviors. Our work leverages the
effects of topology to overcome challenges for low-temperature
thermoelectric energy harvesting from a power factor perspective.

Results
Quantum oscillations. We first present the longitudinal magne-
toresistance (MR) data, where Giant MR was observed. At T < 25 K,
the MR � ρxxðBÞ � ρxxð0TÞ

� �
=ρxxð0TÞ exceeds 105% (Fig. 1c).

This is a signature of electron-hole compensation, which is further
confirmed by the two-band model fitting of conductivity, with ne ¼
2:39 ´ 1019 cm�3 and nh ¼ 2:35 ´ 1019 cm�3 at T= 2.5 K, along
with a high mobility of � 1 ´ 105 cm2 V�1 s�1(Supplementary
Note 3). The background-subtracted MR, denoted ΔMR, exhibits
Shubnikov-de Haas oscillations, which are plotted against 1/B to
determine oscillation frequencies (Fig. 1d). The Fourier transform
of ΔMR shows two small carrier pockets with low frequency Fα ¼
4T and Fβ ¼ 18T among four pockets (Supplementary Note 4 and
Fig. 1e). The LL fan diagram analysis indicates the two small
pockets are at n= 2 LL and n= 0 LL, respectively (Supplementary
Note 5 and Fig. 1f). The intersections of the linear LL index plots
(−0.037 for n= 0 LL and +0.065 for n= 2) lying between −1/8 to
+1/8 indicates that the two pockets are both topologically
nontrivial22,23, from which we attribute the n= 2 LL to the electron
pocket of the W1Weyl node, and the n= 0 LL to the hole pocket of
the W2 Weyl node (Fig. 1g). Moreover, we see that the W2 and W1
pockets enter the quantum limit at B ~ 3.8 T and 16 T, respectively.
There is an alternate way to infer LL. The Weyl fermion dispersion
of the nth LL at is given by En ¼ sgnðnÞvF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e�hB nj jp

, whereas the
oscillation frequency F satisfies F ¼ E2

F=2e�hv
2
F . When En � EF ,

we have F � B nj j. This leads to an agreement between n= 2
LL and the measured Fβ ¼ 18T at B ~ 9 T. For Fα, the low fre-
quency 4 T suggests an extremely small Fermi surface. Since
the spacing between n= 1 and n= 0 LLs is given by
E1 � E0 ¼ vF

ffiffiffiffiffiffiffiffiffiffi
2e�hB

p ¼ EF
ffiffiffiffiffiffiffiffi
B=F

p
, the condition to reach the n= 0

LL quantum limit for W2 pocket is met at B> Fα ¼ 4T. This value
agrees well with the above LL index analysis.

Non-saturating thermopower and giant power factor. Having
determined the carrier characteristics, we carried out thermo-
electric measurements using a diagonal offset geometry (Fig. 2a),
where the electrical and thermal transport along both the long-
itudinal and transverse directions can be acquired together by
flipping the field polarity (Supplementary Note 6, which also
contains the phase relations between various thermoelectric
quantities). The longitudinal thermopower Sxx is shown in
Fig. 2b, where Sxx increases over 200-fold compared to its zero-
field value, and reaches a giant magnitude of 1:07 ´ 103 μVK�1

without sign of saturation at B= 9 T and T= 40 K. One promi-
nent feature is that Sxx develops a double-peak behavior, which
may be attributed to the two types of Weyl nodes: the higher
carrier mobility and lower carrier density at the W2 node leads to
reduced phonon scattering, and thus the high Sxx can persist to
higher temperatures. Quantitatively, it has been predicted that for
the n= 0 chiral LL of Weyl electrons, Sxx obeys a simple for-
mula20:

Sxx ¼
k2B
h2

Nf

12
TB

veffF nh � neð Þ ð1Þ

where Nf is the degeneracy of the Weyl nodes, nh � ne is the net
carrier density, and veffF is an effective Fermi velocity. As TaP has
two sets of Weyl nodes with different velocities and energies, in
this work we introduce veffF as an effective parameter capturing an
average Fermi velocity of the system.
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The linearity of Sxx with T and B is shown in Fig. 2c, d,
respectively. It is noteworthy that Eq. (1) is in quantitative
agreement with our result if we adopt the fitted value of the veffF
using Eq. (3) and Eq. (S14), described in greater detail in the
following section. Such quantitative agreement is valid across all
fields and up to ~40 K and is a measure of the success of the
effective model (Fig. 2e). Moreover, a giant longitudinal power
factor � S2xx=ρxx up to 525 μWcm−1 K−2 is achieved due to the
large entropy generated by the linearly-dispersive bands at
quantizing magnetic fields, while a low ρxx is maintained due to
the protection of the gapless n= 0 LL, evading the typical fate of
carrier cyclotron motion and localization under fields20,21. In fact,
this value is an order of magnitude higher than peak values of
promising thermoelectrics (e.g., 10 μWcm−1 K−2 for SnSe at
~800 K24) and two orders of magnitude higher than non-
topological semimetals10,11, which can achieve high thermopower
at high magnetic fields with linear-dispersive bands, but cannot
simultaneously maintain a low magneto-electrical resistivity.

Quantized thermoelectric Hall effect. Regarding the transverse
properties, we see that the transverse thermopower Syx exhibits a
plateau with increasing B-field, which is known to originate from
the constant k-space volume as thermopower is a measure of
occupational entropy in state space12. The thermoelectric Hall
conductivity αxy � ðSxxρyx � SyxρxxÞ=ðρ2xx þ ρ2yxÞ is shown in
Fig. 3b, where in the low-temperature range, the flatness with
respect to B-field starts to emerge. In particular, under the low-
temperature kBT � EF and high-field B � E2

F=�hev
2
F limit, αxy is

predicted to approach the following universal value that is
independent of B-field, disorder, carrier density, and even carrier
type21:

αxy; ideal ¼
π2

3
ek2B

ð2π�hÞ2
Nf

veffF
T ð2Þ

The temperature dependence of αxy is shown in Fig. 3c, where we see
that the linearity with T holds up to T ~ 10 K. As a direct con-
sequence, the αxy=T curves converge to a single curve at high fields
(Fig. 3d, e), where an ideal value αxy; ideal=T ¼ 0:4AK�2 m�1 is

determined by evaluating Eq. (2) using veffF ¼ 1:4´ 104 m s�1, which
is extracted by fitting a more general Eq. (3) at base temperature:

αxy ¼
eNf

2π�h

X1
n¼0

Z 1

0

dkz
π

s
ε0nðkzÞ � μ

kBT

� �
þ s

ε0nðkzÞ þ μ

kBT

� �� �
ð3Þ

in which s is the electronic entropy function (Eq. S13). The mag-
nitude veffF is comparable to the simple weighted average of projected
Fermi velocity vW1

F;z ¼ 0:77 ´ 105 m s�1, vW2
F;z ¼ 1:88 ´ 105 m s�125,

which gives �veffF;z ¼ 1:5´ 105 m s�1, where the z-direction was cho-
sen to coincide with the magnetic field direction. The fitted chemical
potential μ is consistent with the electrical transport measurements,
whereas the veffF is lower than the vF at W225. This can be under-
stood, as carriers at W1 Weyl nodes at n= 2 LL have yet to reach
extreme quantum limit (Figs. 1g and 3f, and Supplementary Notes 6
and 7). For temperatures above 10 K, scattering effects are significant
and the dissipationless limit assumed in Eq. (3) is no longer valid;
thus, for fits at T ≥ 10 K, approximate forms of αxy , which include a
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separated in momentum space. c Magnetoresistance (MR) as a function of magnetic field at different temperatures from 2.5 K to 300 K. A high (>105%)
MR ratio is observed. d The MR measurement configuration (top) and ΔMR as a function of 1/B (bottom). e− and h+ denote electrons and holes,
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finite scattering time were used (Eq. (S14) and Eq. (S16)). To cor-
roborate the universal quantization behavior of αxy=T , we per-
formed separate thermoelectric measurements up to B= 14 T at
T= 2 K, 4 K and 6 K, where the collapse onto a single curve and a
clearer plateau are observed (Supplementary Note 8), in addition to
giving αxy; ideal=T ¼ 0:37AK�2 m�1, in quantitative agreement with
the 9 T data. Finally, to show that the quantized thermoelectric Hall
coefficient αxy drives the ultrahigh thermopower and giant power
factor, we decompose Sxx into its transverse ð�αxyρxyÞ and long-

itudinal αxxρxx
� �

components, where we see that the transverse term
αxyρxy contributes to ~90% of the longitudinal Sxx (Fig. 4a and
Supplementary Note 9). The corresponding decomposed contribu-
tions to power factor S2xx=ρxx is shown in Fig. 4b.

In a nutshell, the quantized αxy , large non-saturating Sxx , and
ultrahigh power factor S2xx=ρxx all originate from the topological
Weyl nodes, but with increasingly stringent manifestation
conditions: the quantized αxy comes directly from the gapless
n= 0 LL states of Weyl fermions; as Sxx ¼ �αxyρxy þ αxxρxx, ρxy
should increase at high fields to obtain non-saturating Sxx with
the field-independent αxy ; only when the transverse components
�αxyρxy dominate the Sxx with moderate ρxx can the power factor
S2xx=ρxx be enhanced; the gapless n= 0 LL states can also
contribute to reduce the ρxx.

Breakdown of the Wiedemann-Franz law. The Wiedemann-
Franz law is a robust empirical law stating that the ratio between
the electronic thermal conductivity κe and electrical conductivity

σ are related by a universal Lorenz number:

L0 �
κe

σT
¼ π2

3
kB
e

� �2

¼ 2:44 ´ 10�8 WΩK�2 ð4Þ

Recently, it has been reported that there is strong violation of the
WF law in the 2D Dirac fluid of graphene26 and WSMWP227 due
to collective electron hydrodynamics. Other behaviors of elec-
trons, like quantum criticality28 or quasiparticle breakdown29,30,
can also lead to the WF law violation. It is thus worthwhile to
examine the validity of the WF law in the field-induced high-
entropy state of TaP. To do so, it is crucial to properly separate κe

from the lattice thermal conductivity κph. We adopt the following
empirical relation by using the field-dependence of κe31:

κxx T; Bð Þ ¼ κphxx Tð Þ þ κexx Tð Þ
1þ βe Tð ÞBm ð5Þ

where βeðTÞ is a measure of zero-field electron mean free path
and m is a factor related to the nature of scattering. Figure 5a
demonstrates an example for such a separation procedure (Sup-
plementary Note 11). Using this method, we see that the extracted
κph agrees well with the computed value from ab initio calcula-
tions (Fig. 5b and Supplementary Note 12), from which the
phonon dispersions are also computed, and agree well with
measured dispersion from inelastic scattering (Fig. 5c and Sup-
plementary Note 10). All these agreements indicate the reliability
of the separation process. The corresponding κe and the L0 is
shown in Fig. 5d, e, respectively. At B= 0 T, the agreement with
the WF law is good. However, as field increases to B= 9 T, a
fourfold violation of WF law is observed (Fig. 5d). This happens
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across a wide temperature range but not at low temperatures,
indicating the link of scattering (Supplementary Note 11). The
observed strong violation of the WF law hints at the possibility of
field-driven, scattering-enhanced collective behaviors in a large
entropic system and is subject to further investigation.

Discussion
Pathway toward room-temperature topological thermo-
electrics. In this work, we report high thermopower and giant
thermoelectric power factor in the WSM TaP, induced by the
quantized thermoelectric Hall effect originating from topologically
protected Weyl nodes at the quantum limit. These features are
linked as follows: in a strong magnetic field, Sxx � αxyρyx , the
quantizing behavior of αxy combined with the continual increase of
ρyx with magnetic field leads to the growth of Sxx, while the sup-
pression of longitudinal portion αxxρxx to Sxx further contributes to
high power factor S2xx=ρxx . The choice of TaP is due to its simpler
Fermi surface compared to other members in the TaAs family25. On
the other hand, the huge mass difference between Ta and P atoms
reduces the three-phonon process and results in a high thermal
conductivity, making it not directly applicable as a thermoelectric
material. Even so, our work sheds light on a systematic pathway to
seek promising topological thermoelectrics: To increase Sxx , large
carrier compensation is desired (Eq. (1)). To simultaneously main-
tain low ρxx , simultaneously high carrier densities nh and ne are
required but not sufficient. In a topologically trivial semimetal such
as Bi, although high thermopower can be achieved at the quantum
limit SxxðBiÞ � 3 ´ 103 μVK�1 vs SxxðTaPÞ � 1 ´ 103 μVK�1ð Þ,

the electrical resistivity is significantly enhanced at high magnetic
field ρxxðBiÞ � 2 ´ 10�2 Ωm vs ρxxðTaPÞ � 1 ´ 10�5 Ωm

� �
10, indi-

cating the crucial contribution of the gapless n= 0 LL states from
the topologically protected Weyl nodes. To tune the working tem-
perature toward room temperature, long relaxation time is favored,
along with preservation of the quantum limit, where thermal energy
is smaller than the LL level spacing, kBT � vF

ffiffiffiffiffiffiffiffi
�heB

p
21. Finally,

intrinsic magnetism can be used to replace the external B-field.
Overall, we foresee that magnetic topological WSMs and related
topological nodal line semimetals32,33 with protected gapless states
are promising candidate materials for thermoelectrics when charge
carriers are largely compensated and the Fermi level is tuned to the
gapless nodes to unlock the quantized thermoelectric Hall effect. To
summarize, we demonstrated non-saturating longitudinal thermo-
power, giant power factor, and a signature of quantized thermo-
electric Hall conductivity in a WSM in quantitative agreement with
recent theoretical proposals. Furthermore, a field-driven breakdown
of the WF law is observed at intermediate temperatures. Given the
promising magnitudes of thermopower and power factor, our work
sheds light on a few essential requirements that high-performance
room-temperature thermoelectrics should meet. These include a way
to create giant electronic entropy and reduce carrier density, and a
way of evading localization while maintaining high electrical con-
ductivity. Interestingly, the n= 0 LL state with topologically pro-
tected Weyl nodes in a WSM satisfies all these requirements. Our
work thus demonstrates the possibility of topological materials to
lead the breakthrough of thermoelectric materials working below
room temperature.
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Note added. When we were finalizing this manuscript, we
became aware of a work on Dirac semimetal34. The related work
and our work mutually strengthened each other on the part of the
quantized thermoelectric Hall effect.

Data availability
The datasets generated during and/or analysed during the current study are available
from the corresponding author on reasonable request.
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