
1

AN INTRODUCTION TO LINEAR ALGEBRA USING PYTHON

Summer 2021
Zoom Lecture: Tu: 2:00-4:00 p.m.
National Science Foundation (NSF) Center for Integrated Quantum Materials
(CIQM), DMR -1231319
Dr. Steven L. Richardson (srichards22@comcast.net)
Professor Emeritus of Electrical Engineering, Department of Electrical and
Computer Engineering, Howard University, Washington, DC
and
Faculty Associate in Applied Physics, John A. Paulson School of Engineering
and Applied Sciences, Harvard University, Cambridge, MA

PROBLEM SET XII
(due Tuesday, August 10, 2021)

Problem 1

As discussed in Lecture 12 please explicitly show that

~a1 ·
(
~b−A~x∗

)
= 0

~a2 ·
(
~b−A~x∗

)
= 0

can be recast as

~aT
1

(
~b−A~x∗

)
= 0

~aT
2 ·

(
~b−A~x∗

)
= 0

which can finally be written as

AT
(
~b−A~x∗

)
= ~0

where

A = (~v1 ~v2)

As a hint use the case of square matrices of order 2.

2

Problem 2

Given the vectors

~b =

(
−1

6

)

~a =

(
4
2

)

find

proj~a~b

Now calculate the projection matrix P and verify your results.

Problem 3

Given the vectors

~b =

 2
−1

3

~a =

 4
−1

2

find

proj~a~b

Now calculate the projection matrix P and verify your results.

Problem 4

Given the vector

~b =

(
1
1

)

find the projection of ~b along the line

2x− y = 0

3

Problem 5

Given the vectors

~b =

 1
1
1

~a =

 0
2

−1

find the vector components of ~b along ~a and orthogonal to ~a.

Problem 6

Given the vectors

~b =

2
1
1
2

~a =

4

−4
2

−2

find the vector components of ~b along ~a and orthogonal to ~a. Now you see the power of
projections in linear algebra. Try solving this problem geometrically in R4. I wish you good
luck!

Problem 7

Given the vectors

~b =

 1
−2

4

~a =

 2
3
6

find the length of the projection of ~b without finding the actual vector itself.

4

Problem 8

Given the vectors

~b =

2
3
1
5

~a =

−4

2
−2

3

find the length of the projection of ~b without finding the actual vector itself.

Problem 9

Diagonalize the matrix B

B =

(
2 −1

−1 2

)

and show that

Bk =

(
1 + 3k 1 − 3k

1 − 3k 1 + 3k

)

Problem 10

Diagonalize the matrix S

B =

(
5 1
0 4

)

and show that

Bk =

(
5k 5k − 4k

0 4k

)

5

Problem 11

In Problems 9 and 10 what happens to the final results in the limit as k approaches
infinity? You might think this happens to all matrices, but it really depends on the matrix
elements. What do you think happens if all the matrix elements are each less than unity?
Now here comes an interesting matrix A whose matrix elements are all each less than unity.
For this case, consider the matrix Ak. As k approaches infinity, the final behavior is quite
peculiar as the matrix elements become final non-zero constants! This is an example of a
Markov matrix where every column of the matrix adds up to unity and all matrix elements
are positive. Markov matrices are quite useful in probability theory and for search engines
like Google. Show exactly what is happening in this case and think about eigenvectors in
discussing your final results.

A =

(
0.8 0.3
0.2 0.7

)

Problem 12

The nth power of rotation through θ is a rotation through n θ. Using matrix diagonal-
ization and Euler’s formula prove this gem of a formula

Rn =

(
cos θ − sin θ
sin θ cos θ

)n

=

(
cosn θ − sinn θ
sinn θ cosn θ

)

6

Python Exercise 12

1. Up until now every time in this course that you have created a matrix and its matrix
elements everything vanishes once you shut down your Jupyter notebook. We need to learn
how to save matrices in Python as files and how to read and write general files in Python.

First of all how do we write a file?

with open(“greet.txt”, “w”) as f:#This command opens the file “greet.txt” if it exists
and creates it if it does not exist. The “w” command tells Python to write data into the file.

f.write (“Hello, world!”)#This command tells Python to write the string “Hello,
world!” into the file“greet.txt”.

Next how do we read a file?

with open(“greet.txt”, “r”) as f:#This command opens the file “greet.txt” to read from
it.

sample =f.read#This command tells Python to load the contents of the file “greet.txt”
into the variable “sample”

print(sample)

Practice these commands yourself by creating and reading your own files. Might I suggest
the nice little inexpensive book by Mark Myers,“A Smarter Way to Learn Python”? It deals
with learning Python from a non-scientific viewpoint (i.e. no linear algebra, no calculus, no
scientific computing, period). A much more comprehensive book by Andrew Bird et al. is
entitled “The Python Workshop: A New, Interactive Approach to Learning Python”.

2. We introduced the while loop back in Problem Set VII. Here we introduce the for
loop in Python. What is the difference? Consult on-line resources in Python to learn more
about the differences between these two important kinds of loops in Python. Experiment
using this script with random matrices of your choice.

Here is how you create a file in Python and write to it and save the data:

import numpy as np

A = np.array([[1, 2, 3], [4, 5, 6],[7, 8, 9]], np.int32)#Look up the meaning of np.int32

np.savetxt(“test.txt”, A)#write content of matrix A in file “text.txt”

B = np.loadtxt(“test.txt”)#now read file “text.txt” and load it into a new matrix B

print(B)

7

3. Here is another example of how to create a file in Python and write to it and save the
data. Look up the details of any new commands or syntax from on-line Python resources.
Vary and play with some of the commands to make sure you understand what is going on
here.

f = open(“log.txt”,“w”)

from datetime import datetime

import time

for i in range(0,10):

print(datetime.now().strftime(“%Y%m%d %H:%M:%S - ”),i)

f.write(datetime.now().strftime(“%Y%m%d %H:%M:%S - ”))

time.sleep(1)

f.write(str(i))

f.write(“ n”)

4. Here is another example of a matrix that does something when it operates on a vector.
It is called a shear matrix. Can you understand why? Create several examples in Python to
visualize what is going on here. Can you invent other types of shear matrices in R2?

A =

(
1 0
1 1

)

5. Use Python to experiment with large Markov and non-Markov matrices as discussed
in Problem 11 in the limit as k gets larger for Ak.

6. We spent most of our time in Python using the NumPy library and very little time
using the SymPy library. Actually SymPy does most of what NumPy can do, but the
syntax is different. Use on-line resources to investigate this.

8

7. Here is a nice little Python script which you should be able to understand now. it also
tests the speed of direct matrix multiplication. This is a rough version of the script and it
can be optimized. That way you will learn something! Experiment with this script.

import numpy as np

import scipy.linalg as la

import time

P = np.array([[1,1],[1,-1]])

print(P)

D=np.diag((3,1))

print(D)

M = P@D@la.inv(P)

print(M)

evals,evecs = la.eig(M)

print(evals)

Pinv =la.inv(P)

k=200

start =time.time()

result = M.copy()

for in range(1,k):

result = result @ M

end =time.time()

print(result)

print(end-start)

8. Now let us refer back to Problem 7. Edit it to perform the same calculation using ma-
trix diagonalization and compare the run times. You should discover something interesting
here! Vary the matrix sizes and the value of k.

You will need some additional code for this problem: P @ D**k @ Pinv

9

9. Here are some interesting concluding remarks:

9.1 All symmetric matrices are diagonalizable.

9.2 Distinct eigenvalues always lead to distinct eigenvectors.

9.3 Distinct eigenvalues always lead to linearly independent eigenvectors.

9.4 A square matrix of order n is diagonalizable if and only if it has n linearly independent
eigenvectors.

9.5 Eigenvalues which are not distinct will lead to eigenvectors which may or may not be
linearly independent.

You should think carefully why all of these statements are true. You can consult the
references in Problem Set XIII to check your thinking!

