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Problem 1

Describe geometrically what the following matrices do when they act on a vector:

(a) A =

(
0 1
1 0

)

(b) B =

 1 0 0
0 1 0
0 0 0



(c) C =

 1 0 0
0 0 0
0 0 1



(d) D =

 0 0 0
0 1 0
0 0 1



(e) E =

 1 0 0
0 1 0
0 0 −1



(f) F =

 −1 0 0
0 1 0
0 0 1
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(g) G =

 1 0 0
0 −1 0
0 0 1



Problem 2

Describe geometrically what the following matrices do when they act on a vector. Con-
sider here the two possibilities that k > 1 or k < -1.

(a) A =

(
−k 0
0 k

)

(b) B =

(
k 0
0 −k

)

(c) C =

(
0 k
k 0

)

(d) D =

(
k 0
0 0

)

(e) E =

(
0 0
0 k

)

(f) F =

 k 0 0
0 k 0
0 0 0



(g) G =

 k 0 0
0 0 0
0 0 k



(h) H =

 0 0 0
0 k 0
0 0 k
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(j) J =

 k 0 0
0 k 0
0 0 −k



(k) K =

 −k 0 0
0 k 0
0 0 k



(l) L =

 k 0 0
0 −k 0
0 0 k



Problem 3

Show that the following matrix W is orthogonal

W =
1

3

 1 2 2
2 1 −2
−2 2 −1



Problem 4

First show that G is orthogonal and then explicitly show that its rows (columns) are
indeed orthonormal vectors.

G =
1

9

 1 8 −4
4 −4 −7
8 1 4


Problem 5

Show that the following matrix T is unitary

T =
1
√
3


1 1 1 0
1 0 −1 −i
1 −1 0 i
1 −i i 1
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Problem 6

Show that the following matrix K is unitary

K =
1

6

(
2− 4i 4i
−4i −2− 4i

)

Problem 7

Show that the following matrix Q is unitary

Q =
1

5

(
−1 + 2i −4− 2i
2− 4i −2− i

)

Problem 8

Using Euler’s formula, fill in the missing steps from Lecture 9 to show that the rotation
matrix in two dimensions is given by

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)

Problem 9

As discussed in Lecture 9 prove that the rotation matrix in two dimensions obeys the
following identities where I is the identity matrix

R(θ)TR(θ) = R(θ)R(θ)T = I

Problem 10

As discussed in Lecture 9 we shall prove here that the angle θ between two vectors ~x
and ~y is preserved when they are both acted on by an orthogonal matrix A.

First start with the definition of the dot product of two vectors and show that

cos θ =
〈~x|~y〉

〈~x|~x〉12 〈~y|~y〉12

Now we already know from Lecture 9 that

〈A~x|A~x〉 = 〈~x|~x〉

〈A~y|A~y〉 = 〈~y|~y〉

so we need to show that

〈A~x|A~y〉 = 〈~x|~y〉

Hint: Use the same approach we used in Lecture 9 to explicitly demonstrate that orthog-
onal matrices always preserve the length of a vector that they act on.
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Python Exercise 9

1. The following is a Python script (a fancy word for a program) for plotting vectors in
three dimensions

import numpy as np

import matplotlib.pyplot as plt

from mpl toolkits import mplot3d

fig = plt.figure()

ax = plt.axes(projection“3d”)

v =[0,5,4]

ax.set xlim([-1,10])

ax.set ylim([-10,10])

ax.set zlim([0,10])

start=[0,0,0]

ax.quiver(start[0], start[1], start[2], v[0],v[1],v[2])

plt.show()

Go back to Problem Set VI and see how you can learn new plotting skills to understand
this script. All of the commands in the above script are easy to understand and you should
consult on-line Python sources for more insight (e.g. try changing the colors of your vectors).
Now choose a vector and use Python to visualize the vector both before and after it is acted
on by the matrices in Problem 1. Slightly modify the plot script above to plot multiple
vectors in a single plot. This way you can visualize both the initial and final vectors in a
single plot.

2. Choose a vector and use Python to visualize the vector both before and after it is
acted on by the matrices in Problem 2. Slightly modify the plot script above to plot multiple
vectors in a single plot. This way you can visualize both the initial and final vectors in a
single plot.


